Modelling pattern formations of bacteria:

influence of gravity

Boleslovas Dapkiinas'*, Romas Baronas', Remigijus Simkus?

"Faculty of Mathematics and Informatics, Life Sciences Center, *e-mail: boleslovas.dapkunas@mif.vu.l

Vilnius University, Vilnius, Lithuania

Introduction

In microcontainers, growing bacterial colonies of
various species self-organize and form patterns. Often
during physical experiments, the formation of plumes
can be observed: vertical structures descending from
the larger aggregate of bacteria near the top of the
microcontainer. The mechanism of plume formation is
still poorly understood, but the use of mathematical
modelling can help fill the gaps of knowledge.

Studies of mathematical models for bacterial pattern
formation have intensified since the introduction of
Keller—Segel partial differential equations model for
chemotaxis in 1971 [1]. When modelling Escherichia
coli, experiments have shown that the dynamics of
oxygen have to be taken into account [2]. Hillesdon
et al. have shown that by coupling the Keller—Segel
model with the fluid flow equation, plume formation
can be modelled in colonies of Bacillus subtilis [3].

Numerical simulation Experimental data

Because of nonlinearity, the initial value 2)

problem was solved numerically using hybrid
implicit-explicit finite difference technique.
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A uniform discrete grid 250112 in space 160

dimensions, and a constant dimensionless
time step in the interval [2 - 104,5 - 10%] was
used.
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Simulator was programmed in Python
programming language using the NumPy
package, and the results have been
visualized using Matplotlib library.
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odel parameters Experimental data examples: a) perspective view of the
a=1 =073 A1=0048 x =383, bioluminescent culture [5], b) spatiotemporal plot
D, =0.04, D, =012, o0p=1 of bioluminescence near the contact line [2]

The aim of this work

IS to investigate the effects of gravity on the modelled
Escherichia coli plume formation, and to investigate
the influence of these dimensionless model parame-
ters: Schmidt number, Rayleigh number, and oxygen
cut-off threshold [4].

Simulation results
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Governing equations

The dynamics of an E. coli population are described
by a system of Keller—Segel type equations coupled
with Navier—Stokes incompressible fluid equations in
the stream-vorticity formulation:

on n
E+u-Vn=DnAn—)(V(nVc)+an(1—g),
dc n
E"‘“‘VC=AC+1+’8n@(0max—0)—C»
do

E+u Vo = D,Ao — An,

dw on
E+u-Va)=vAw—Kva,

AV = —w

n(x,y,t) — cell density,

c(x,y,t) — chemoattractant concentration,
o(x,y,t) — oxygen concentration,
w(x,y,t) — vorticity vector,

¥(x,y,t) — stream function,

u= (ux(x, Y, 0),uy(x,y, t)) — velocity field of the water,

D,,, D, — diffusion coefficients,

x — chemotactic sensitivity,

a — cell population growth rate,

f — saturating chemoattractant production rate,

A — oxygen consumption rate,

omax — Maximal oxygen concentration for activity,
v — Schmidt number,

k — Rayleigh number.

Vorticity function w and stream function ¥ are defined as

follows:
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Visualization of cell density: spatiotemporal plots showing dynamics of cell densities, and cell densities at
dimensionless time moment =240, simulated using parameters shown.

Modeling domain

The spatiotemporal pattern formation was modeled in
the liquid cultures of luminous E. coli near the inner
latter surface of a circular micro-container.

The 2D domain of the dimensionless model is
(x,y) €[0,1] x[0,h], [=5.6m, h=0.45]

The initial values of the model:
n(x,y,0)=1+¢(x,y), c(x,y,0) =0, o(x,y,0) = oy,

¢ is a 10% random perturbation, o, is the oxygen
concentration near the upper contact surface.

The boundary conditions for n and ¢ are no-pene-
tration at the bottom and the top of the domain, for o
are no-penetration at the bottom and fixed at the top
of the domain. The boundary conditions at the sides of
the domain are periodic.

Conclusions

Reaction—diffusion—chemotaxis model, coupled with the incompressible Navier—Stokes equations and a cut-off mechanism,
can simulate mushroom-shaped plume-like patterns resembling bioluminescence patterns.

Plumes form in simulated bacterial patterns only when the Rayleigh number x exceeds a critical value, which depends on
the Schmidt number. As the Schmidt number vincreases, plumes form earlier.

Once the simulation reaches a quasi-stable state, the Schmidt number has only a small effect on the plume form, even for
large differences in parameter vvalues.
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