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Abstract

Geometric Multidimensional Scaling (GMDS) is
an efficient iterative approach for dimensionality
reduction derived from a geometric interpretation
of the raw stress optimization problem. It pro-
vides analytically defined steps corresponding to

Three Key Discoveries

We provide a rigorous asymptotic analysis of the
GMDSb iteration formula under extreme conditions.
This analysis reveals the geometric structure of the
optimization landscape and the basins of attraction
near the boundaries of the configuration space.

the anti-gradient direction of the local stress.
This research presents a rigorous theoretical in-
vestigation into the asymptotic properties of

the GMDS iteration formula and the geometry
of the optimization. We formally prove three
novel discoveries regarding the asymptotics near

singularities, at infinity, and during configuration
coalescence.

These findings significantly deepen the theoretical
understanding of GMDS dynamics and the geo-
metric characteristics of the MDS stress function
near critical regions, enabling visualization and

control of the optimization process.

The MIDS Optimization Challenge

MDS seeks a configuration of points Y = {Y7, ..., Y, }
in R" such that the inter-point distances closely
match the original pairwise dissimilarities D = {d;; }.
This is achieved by minimizing the Raw Stress
function:

S(Y) :gj%;l(dij_ Y-yl (1)
The Problem: The landscape of S(Y) is highly
non-convex and characterized by numerous local min-
ima. Traditional methods (e.g., SMACOF) often get
trapped and operate as "black boxes'.

Geometric MDS (GMDS)
Framework

GMDS optimizes the position of a single point Y

while others are fixed, minimizing the local stress:
m

S*(Yj) = ;(dz’j —[|Yi = Yj[)" (2)
1)
The update is derived geometrically using Auxiliary
Points A;;, representing the ideal location for Y rel-
ative to Y;:
Y:—-Y,
‘7 - (3)
|Y; = Yi
The new position Y." is the centroid of these auxil-
1ary points:

Aij =Y+ d;j-
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Key Property (Anti-Gradient): The GMDS
step corresponds exactly to the anti-gradient direc-
tion, guaranteeing descent [6]:
. 1
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The Research Focus: The GMDS formula (Eq.
4) is undefined at singularities (||Y; — Yi|| — 0). We

analyze the algorithm’s dynamics near these critical

VS*y. (5)

regions.

Discovery 1: Asymptotics Near
Singularities (Y; — Y})

We investigate the scenario where the point being
moved, Y;, approaches another fixed point Y.

Theorem

(Limit Hypersphere Near Singularity).
As ||Y; — Yi|| = 0, the limit set of the resulting
GMDS positions Y, forms an n-dimensional
hypersphere, S .
The limit position Y;*(u), parameterized by the
direction of approach uw € S™ ! (the unit sphere),
IS:

Yi(u) = Cjx + Rjp - u. (6)
The center C;; is analytically derived (see paper

Fq. 12), and the radius is:

dj
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o— (7)

Implication (Stability): The radius R,y
quantifies the repulsive force near the singu-

Rj =

larity. This reveals an inherent mechanism within
GMDSbS that prevents the degenerate collapse of
points if d;i > 0.

Discovery 2: Asymptotics at
Infinity (Y]] — o)

We analyze the dynamics when the point Y; moves
infinitely far away:.

Theorem

(Limit Hypersphere at Infinity). As
|Y;|| — oo, the limit set of Y also forms an
n-dimensional hypersphere, S.

Y (u) = Cx + Reo - u. (8)
The center C, is the centroid of the remaining
configuration:
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The radius R, is the average dissimilarity of
object j:

(10)

Implication (Centering): This reveals an in-
herent "pull-back" mechanism. If a point di-
verges, the iteration pulls it back towards the cen-
troid, managing outliers and stabilizing the visu-

alization.

Discovery 3: Configuration
Coalescence (Y; — Y))

We investigate how the optimization landscape for
Y; evolves when two distinct fixed points, Y}, and
Y;, approach each other. This analyzes how basins
of attraction merge.

We consider the interaction between the limit hy-
perspheres S, and S;; (from Discovery 1).

Theorem

(Limit Tangency wunder Coalescence).
As Y. — Y], the distance between the centers
of the limit hyperspheres C ;. and C;; converges
exactly to the sum of their radii.

3%6@15 HCj,k — Cj,lH — Rj,k T Rj,l- (11>

Implication (Landscape Evolution): The
limit hyperspheres become exactly tangent ex-

ternally in the limit. This characterizes the pre-
cise geometric mechanism by which basins of at-
traction merge as the configuration approaches de-

generacy.

Visualization of the Landscape

We illustrate the theoretical findings using a 2D visu-
alization (n = 2) for m = 6 points. We visualize the
GMDS iteration trajectories (streamlines) for Y.

(a) Well-separated configuration: Colored cir-
cles show limit sets Sg i (Discovery 1). The outer
black circle shows the limit set at infinity (Discovery
2).

(b) Coalescence of Y| and Y,: The correspond-
ing limit circles are nearly tangent (Discovery 3). The

landscape deforms, and the basins merge.

Conclusions

This study provides a rigorous mathematical frame-
work for understanding the GMDS iteration and the
ceometry of the MDS optimization.

o Stability Mechanisms: We proved that
GMDS steps near singularities and at infinity are
constrained to well-defined hyperspheres, revealing
inherent mechanisms for stability and centering.

® Foundation for Advancement: These
theoretical insights provide a foundation for
robust, visualization-guided GMDS algorithms,
transforming the optimization from a "black box'
to a controllable process.



