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Abstract

Geometric Multidimensional Scaling (GMDS) is
an efficient iterative approach for dimensionality
reduction derived from a geometric interpretation
of the raw stress optimization problem. It pro-
vides analytically defined steps corresponding to
the anti-gradient direction of the local stress.
This research presents a rigorous theoretical in-
vestigation into the asymptotic properties of
the GMDS iteration formula and the geometry
of the optimization. We formally prove three
novel discoveries regarding the asymptotics near
singularities, at infinity, and during configuration
coalescence.
These findings significantly deepen the theoretical
understanding of GMDS dynamics and the geo-
metric characteristics of the MDS stress function
near critical regions, enabling visualization and
control of the optimization process.

The MDS Optimization Challenge

MDS seeks a configuration of points Y = {Y1, ..., Ym}
in Rn such that the inter-point distances closely
match the original pairwise dissimilarities D = {dij}.
This is achieved by minimizing the Raw Stress
function:

S(Y ) =
m∑

i=1

m∑
j=i+1

(dij − ||Yi − Yj||)2. (1)

The Problem: The landscape of S(Y ) is highly
non-convex and characterized by numerous local min-
ima. Traditional methods (e.g., SMACOF) often get
trapped and operate as "black boxes".

Geometric MDS (GMDS)
Framework

GMDS optimizes the position of a single point Yj

while others are fixed, minimizing the local stress:

S∗(Yj) =
m∑

i̸=j

(dij − ||Yi − Yj||)2. (2)

The update is derived geometrically using Auxiliary
Points Aij, representing the ideal location for Yj rel-
ative to Yi:

Aij = Yi + dij · Yj − Yi

||Yj − Yi||
. (3)

The new position Y ∗
j is the centroid of these auxil-

iary points:
Y ∗

j = 1
m − 1

m∑
i̸=j

Aij. (4)

Key Property (Anti-Gradient): The GMDS
step corresponds exactly to the anti-gradient direc-
tion, guaranteeing descent [6]:

Y ∗
j = Yj − 1

2(m − 1)
∇S∗|Yj

. (5)

The Research Focus: The GMDS formula (Eq.
4) is undefined at singularities (||Yj − Yi|| → 0). We
analyze the algorithm’s dynamics near these critical
regions.

Three Key Discoveries

We provide a rigorous asymptotic analysis of the
GMDS iteration formula under extreme conditions.
This analysis reveals the geometric structure of the
optimization landscape and the basins of attraction
near the boundaries of the configuration space.

Discovery 1: Asymptotics Near
Singularities (Yj → Yk)

We investigate the scenario where the point being
moved, Yj, approaches another fixed point Yk.

Theorem

(Limit Hypersphere Near Singularity).
As ||Yj − Yk|| → 0, the limit set of the resulting
GMDS positions Y ∗

j forms an n-dimensional
hypersphere, Sj,k.
The limit position Y ∗

j (u), parameterized by the
direction of approach u ∈ Sn−1 (the unit sphere),
is:

Y ∗
j (u) = Cj,k + Rj,k · u. (6)

The center Cj,k is analytically derived (see paper
Eq. 12), and the radius is:

Rj,k = djk

m − 1
. (7)

Implication (Stability): The radius Rj,k

quantifies the repulsive force near the singu-
larity. This reveals an inherent mechanism within
GMDS that prevents the degenerate collapse of
points if djk > 0.

Discovery 2: Asymptotics at
Infinity (||Yj|| → ∞)

We analyze the dynamics when the point Yj moves
infinitely far away.

Theorem

(Limit Hypersphere at Infinity). As
||Yj|| → ∞, the limit set of Y ∗

j also forms an
n-dimensional hypersphere, S∞.

Y ∗
j (u) = C∞ + R∞ · u. (8)

The center C∞ is the centroid of the remaining
configuration:

C∞ = 1
m − 1

∑
i̸=j

Yi. (9)

The radius R∞ is the average dissimilarity of
object j:

R∞ = 1
m − 1

∑
i̸=j

dij. (10)

Implication (Centering): This reveals an in-
herent "pull-back" mechanism. If a point di-
verges, the iteration pulls it back towards the cen-
troid, managing outliers and stabilizing the visu-
alization.

Discovery 3: Configuration
Coalescence (Yk → Yl)

We investigate how the optimization landscape for
Yj evolves when two distinct fixed points, Yk and
Yl, approach each other. This analyzes how basins
of attraction merge.
We consider the interaction between the limit hy-
perspheres Sj,k and Sj,l (from Discovery 1).

Theorem

(Limit Tangency under Coalescence).
As Yk → Yl, the distance between the centers
of the limit hyperspheres Cj,k and Cj,l converges
exactly to the sum of their radii.

lim
Yk→Yl

||Cj,k − Cj,l|| = Rj,k + Rj,l. (11)

Implication (Landscape Evolution): The
limit hyperspheres become exactly tangent ex-
ternally in the limit. This characterizes the pre-
cise geometric mechanism by which basins of at-
traction merge as the configuration approaches de-
generacy.

Visualization of the Landscape

We illustrate the theoretical findings using a 2D visu-
alization (n = 2) for m = 6 points. We visualize the
GMDS iteration trajectories (streamlines) for Y6.

(a) Well-separated configuration: Colored cir-
cles show limit sets S6,k (Discovery 1). The outer
black circle shows the limit set at infinity (Discovery
2).
(b) Coalescence of Y1 and Y4: The correspond-
ing limit circles are nearly tangent (Discovery 3). The
landscape deforms, and the basins merge.

Conclusions

This study provides a rigorous mathematical frame-
work for understanding the GMDS iteration and the
geometry of the MDS optimization.
1 Stability Mechanisms: We proved that
GMDS steps near singularities and at infinity are
constrained to well-defined hyperspheres, revealing
inherent mechanisms for stability and centering.

2 Foundation for Advancement: These
theoretical insights provide a foundation for
robust, visualization-guided GMDS algorithms,
transforming the optimization from a "black box"
to a controllable process.
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