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A histogram is one of the simplest and the oldest density estimators. This graphical representation

was first introduced by Karl Pearson in 1891. For the approximation of density 𝑓 𝑥 , the number of

observations 𝑋 𝑡 falling within the range of Ω is calculated and divided by n and the volume of

area Ω. The histogram produced is a step function and the derivative either equals zero or is not

defined (when at the cut off point for two bins). This is a big problem if we are trying to maximize a

likelihood function that is defined in terms of the densities of the distributions.

It is remarkable that the histogram stood as the only nonparametric density estimator until the

1950’s, when substantial and simultaneous progress was made in density estimation and in

spectral density estimation. In 1951, in a little-known paper, Fix and Hodges introduced the basic

algorithm of nonparametric density estimation; an unpublished technical report was published

formally as a review by Silverman and Jones in 1989. They addressed the problem of statistical

discrimination when the parametric form of the sampling density was not known. During the

following decade, several general algorithms and alternative theoretical modes of analysis were

introduced by Rosenblatt in 1956, Parzen in 1962, and Cencov in 1962. Then followed the second

wave of important and primarily theoretical papers by Watson and Leadbetter in 1963,

Loftsgaarden and Quesenberry in 1965, Schwartz in 1967, Epanechnikov in 1969, Tarter and

Kronmal in 1970 and Kimeldorf and Wahba in 1971. The natural multivariate generalization was

introduced by Cacoullos in 1966. Finally, in the 1970’s the first papers focusing on the practical

application of these methods were published by Scott et al. in 1978 and Silverman in 1978. These

and later multivariate applications awaited the computing revolution.

The basic kernel estimator መ𝑓 𝑥 with a kernel function K and a fixed (global) bandwidth h

for multivariate data XϵRd may be written compactly as:
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The kernel function K(u) should satisfy the condition:
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𝐾 𝑢 𝑑𝑢 = 1.

Usually, but not always, K(u) will be a symmetric probability density function 𝐾 𝑢 = 𝐾(−𝑢)
for all values of u.

At first, the data is usually prescaled in order to avoid large differences in data spread. A 

natural approach is first to standardize the data by a linear transformation yielding data with 

zero mean and unit variance. As a result, first equation is applied to the standardized data. 

Let Z denote the sphered values of random X:
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where ഥX is the empirical mean, and SϵRd×d is the empirical covariance matrix. Applying the

kernel density estimator to the standardized data Z = (Z(1), …, Z(n)) yields the following

estimator of density function f(x):
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The comparative analysis of estimation accuracy was made for four different types of 

kernels. The first three kernels are classical, whereas the last one is new.

The Gaussian kernel is consistent with the distribution of normal φ(x) selection:
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The Epanechnikov kernel is the second order polynomial, corrected to satisfy the

properties of the density function:
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The Triweight kernel proposed by Tapia and Thompson in 1978 has better smoothness 

properties and finite support. It was investigated in detail by Hall in 1985:
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The new kernel KNew has lighter tails than Gaussian distribution density and was introduced

by the authors of this article:

𝐾𝑁𝑒𝑤 𝑥 = 𝜑 ҧ𝑔 𝑥 ҧ𝑔′ 𝑥

The main feature of this kernel function is that its form is chosen in such a way as to

minimize the bias that occurs in the construction of the criterion using sample values. The

construction of the kernel is chosen so that the influence of the used sample point on the

constructed estimate is smaller than the environment of that point.

The class of the selected parametric function ҧ𝑔 depends on three parameters:
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This kernel function depends on the spread a, trough b and peak shape c parameters.

KERNEL FORM

FUTURE WORKS

The proposed function of the kernel is still underexplored and requires further in-depth studies. 

One such study is parameterization to obtain the smallest possible mean integrated squared error 

when estimating an unknown distribution density.
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Figure 1 The form of the proposed kernel function with several parameter sets

There are three parameters in kernel density estimator: the sample size n, the kernel function K(∙) and the 

bandwidth h. Quite typically we cannot do anything about the sample size and we have to make the best out of the 

situation by choosing an appropriate kernel and a suitable bandwidth. It is well known that the bandwidth selection 

is the most crucial step in order to obtain a good estimate. Unfortunately, bandwidth selection is the most difficult 

problem in kernel density estimation and a definite and unique solution to this problem does not exist.

It is rather surprising that the most effective bandwidth selection method is a visual assessment by the researcher. 

The researcher visually compares different density estimates, based upon a variety of bandwidths and then 

chooses the bandwidth that corresponds to the subjectively optimal estimate. The unfortunate part is that such 

bandwidths are non-unique; this method will yield different bandwidths when performed by different researchers. 

This method can also be very time consuming.

The approach based on mathematical analysis is to quantify the discrepancy between the estimate and the target 

density by evaluated error criterion. The optimal bandwidth will then be the bandwidth value that minimizes the 

error measured by the error criterion. Such a method is objective and can be time-efficient as computers can solve 

it numerically.

A global measure of precision is the asymptotic mean integrated squared error (AMISE):
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where 𝛻𝜈𝑓 𝑥 = σ𝑘=1
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𝑔(𝑢)2𝑑𝑢 is the roughness of a function. The order of a kernel, v, is 

defined as the order of the first non-zero moment 𝜅𝑗 𝐾 = ∞−
∞
𝑢𝑗𝐾 𝑢 𝑑𝑢. For example, if 𝜅1 𝐾 = 0 and 𝜅2 𝐾 > 0

then K is a second-order kernel and v = 2. If 𝜅1 𝐾 = 𝜅2 𝐾 = 𝜅3 𝐾 = 0 but 𝜅4 𝐾 > 0 then K is a fourth-order 

kernel and v = 4.The order of a symmetric kernel is always even. Symmetric non-negative kernels are second-order 

kernels. A kernel is higher-order kernel if v > 2. These kernels will have negative parts and are not probability 

densities.

The optimal bandwidth is:
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The optimal bandwidth depends on the unknown quantity 𝑅(𝛻(𝜈)𝑓). For a rule-of-thumb bandwidth, Silverman 

proposed that it is possible to try the bandwidth computed by replacing f in the optimal formula by 𝑔0 where g0 is a 

reference density – a plausible candidate for f, and ො𝜎 is the sample standard deviation. The standard choice is a 

multivariate normal density. The idea is that if the true density is normal, then the computed bandwidth will be 

optimal. If the true density is reasonably close to the normal, then the bandwidth will be close to optimal. 

Calculation of that is proceeded according to
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where the double factorial means (2s + 1)!! = (2s + 1) (2s – 1) ... 5 ∙ 3 ∙ 1. Making this substitution, we obtain
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the bandwidths by the standard deviation of each variable, we obtain the rule-of-thumb bandwidth for the ith variable 

is
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Table 1 provides the normal reference rule-of-thumb constants (Cv(K,d)) for the second-order d-variate kernel 

density estimator. First, in the common setting of a second order kernel (v = 2) the rule-of-thumb constants are 

decreasing as d increases. Scott (1992) notes that these reach a minimum when d = 11. The v = 2 case is the only 

one he considers. When v > 2, it is possible to show that the rule-of-thumb constants are increasing in the 

dimensionality of the problem. The basic idea behind this is given that higher-order kernels reduce bias, larger 

bandwidths are needed to minimize AMISE. However, note that the increase is not uniform over v.
Table 1 Normal reference rule-of-thumb constants (Cv(K,d)) for the multivariate second-order kernel density

estimator

BANDWIDTH

Kernel d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

Gaussian 1.059 1.000 0.969 0.951 0.934 0.933 0.929 0.927 0.925 0.925

Epanechnikov 2.345 2.191 2.120 2.073 2.044 2.025 2.012 2.004 1.998 1.995

Triweight 3.155 2.964 2.861 2.800 2.762 2.738 2.723 2.712 2.706 2.702

New 1.142 1.079 1.045 1.025 1.014 1.007 1.002 1.000 0.998 0.998


