Machine Learning Approaches for the Analysis of Functional Brain Connectivity Patterns in Depression

Gajane Mikalkėnienė^{1, 2}, Jolita Bernatavičienė¹

¹Institute of Data Science and Digital Technologies, Vilnius University ²Republican Vilnius Psychiatric Hospital

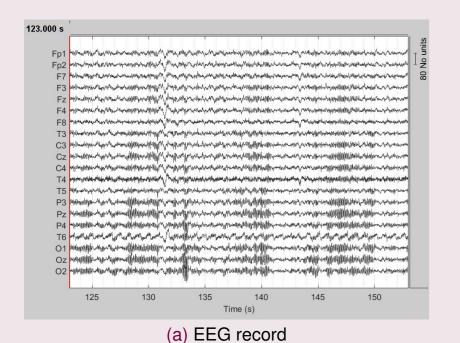
Introduction

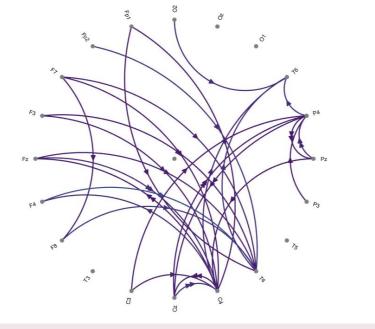
In Lithuania 24 per 1000 residents suffer any kind of **depression**, which is one of key **suicide** risks.

Improvement of prevention and treatment is crucial for **life quality, mental health,** well-being.

During depression not only behaviour changes, but also brain bioelectric activity. The latter is detectable using neuroimaging methods such as EEG, MEG, fNIRS, fMRI. With **functional neuroimaging** methods we can calculate **functional brain connectivity**, which is researched as a biomarker of depression.

Machine learning methods are often applied to classify patients and healthy subjects, to distinguish depressed patients from patients with other mental disorders, to predict the symptom change and treatment efficacy.





(b) Functional brain connectivity as a graph

Institute of Data Science and Digital Technologies

Aim

To evaluate machine learning methods used in this field, what results were achieved and what are the strengths and limitations by analysis of related articles found using PubMed database from 2000 to 2023.

Potential enhancements to these methods can lead to improved diagnostic and therapeutic approaches for depression.

Methods

Articles from 2000 to 2023 found in PubMed:

87 suitable for research, 207 rejected.

In all articles subjects had major depressive disorder as a diagnosis.

4 neuroimaging methods – electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS).

Differentiation into MMD subgroups Responders or non-responders to treatment Neuroimaging ACC/SENS/SPEC,% Author Method SVM 93/95/92 Cash, 2019 fMRI 87/84/89 EEG Bailey, 2019 **CNN-LSTM** Shahabi, 2023 EEG 99/NA/98 ΕN Corlier, 2019 EEG 87/88/85 RF Oakley, 2023 EEG 80/80/81

Medicated or not medicated patients

				_
Method	Neuroimaging	ACC/SENS/SPEC,%	Author	
LR				
(MDD placebo / HC placebo)	fMRI	77/84/72	Liu 2020	

Figure: Data example Source: created by the author.

Goals Most Often Chosen for Researchers

- * Classification of major depressive disorder (MDD) patients and healthy subjects (control group, healthy controls, HC)
- * Differentiation of MDD into subgroups
- * Prediction models for MDD patients

Classification (MDD vs. HC)

Method	Neuroimaging	ACC/SENS/SPEC,%	Author
AdaBoos	st fMRI	59/59/59	Zhi, 2021
AMNI	fMRI	65/65/31	Wang, 2022
BNCPL	fMRI	71/69/73	Zhi, 2021
DNN	fMRI	68/66/70	Zhi, 2021
DUG	fMRI	81/89/68	Li, 2022
GCN	fMRI	84/89/68	Kong, 2021
LR	fMRI	84/80/88	Ichikawa, 2020
SLR	fMRI	80/70/85	Sato, 2023
unFEPG	i fMRI	93/93/86	Li, 2022
RF	fMRI	77/87/64	Xu, 2022
	EEG	99.6/99.6/99.6	Zhang, 2022
CNN	fMRI	71/66/72	Chun, 2020
	EEG	94/96/94	Duan, 2020
	fNIRS	90/NA/NA	Wang, 2021
XGBoos	t fMRI	73/72/74	Shi, 2021
SVM	fMRI	98/100/97	Guo, 2017
	EEG	99.95/99.92/99.98	Zhang, 2022
KNN	EEG	99/99/99.5	Zhang, 2022
LC-KSVI	D EEG	99/99/99	Mohaved, 2022
BPNN	EEG	100/99/99	Zhang, 2022

Prediction

	Of brain	bioel	lectric	activity
--	----------	-------	---------	----------

Method	Neuroimaging	ACC/SENS/SPEC,%	Author	
SVM	MEG	91/91/92	Bailey,2018	
LRM	fMRI	82/100/50	Li, 2023	
DMN+nCPM	fMRI	80/46/91	Ju, 2022	

LR				
(MDD placebo / MDD)	fMRI	80/89/67	Liu, 2020	

MDD or different of	disorde	r				
Disorder	Method	Neuroimaging	ACC/SENS/SPEC,%	6 Author		
bipolar	KNN	EEG	99/99/100	Ravan, 2023		
	RF	EEG	85/83/90	Sanchez, 2022		
	SVM	EEG	89/89/87	Sanchez, 2022		
		fMRI	91/NA/NA	Yu, 2020		
	GPC	fMRI	70/ NA/ NA	Cha, 2022		
PTSD	RVM	fMRI	84/86/81	Zhang, 2021		
schizophrenia	SVM	fMRI	83/84/81	Han, 2019		
MDD by suicidal ideation						
Metho			ACC/SENS/SPEC,%	% Author		
Bayesian a	Igorithm	fMRI	85/75/88	Xu, 2022		
DL	-	fMRI	91/100/84	Xu, 2022		
RF		fMRI	88/94/85	Q. Li, 2023		
SVN	Λ	fMRI	85/85/78	Lin, 2023		
MDD by depression types						
Metho	d Neu	roimaging ACC	/SENS/SPEC,%	Author		
K-Mea		fMRI		ng, 2020		

MDD by brain bioelectric activity

Method	Neuroimaging	ACC/SENS/SPEC,%	Author
SVM	MEG	90/88/94	Bi, 2018

Other classifications

First episode vs reccurent: GNN by fMRI data (Yin, 2019)

MDD subtypes based on connectivity: K-means by fMRI data (80/46/91; Liang, 2020; Zendehrouh, 2020), SVM by fMRI (73/74/72; Nakano, 2020; Frässle, 2020)

Response to treatment: by TMS, fMRI data for SVM (Hopman, 2021)

By symptoms of depression in HC: fNIRS data for diffpool and GCN methods (Yu, 2022)

Of depression severity

For fMRI data were applied such methods as RF (Wade, 2022), SVM (66/72/65; Yamashita, 2021), ADTree (87/89/86; Patel, 2015), SVR (Li, 2021).

Of medication response

Method	Neuroimaging	ACC/SENS/SPEC,%	Author
GCN	fMRI	90/85/93	Kong, 2021
SVM	fMRI	68/62/74	Leaver, 2018

Other predictions

Prediction of behavioral changes: SVR by fMRI data (Yin, 2019) **Prediction of MDD development:** SVM (92/90/93) by fMRI data

(Hirshfeld-Becker, 2019)

Prediction based on a single scan: SVR by fMRI data (Chen, 2022)

Prediction of "brain age": EN, Bayesian ridge, ridge regression by fMRI data (Chen, 2022); MML by fMRI data (77/88/32; Maglanoc, 2020)

Summary

- * Functional brain connectivity in depression can be researched to find the most effective model to classify MDD patients and healthy controls, to differentiate MDD subtypes, to predict the course of MDD, to differentiate MDD from other disorders.
- * SVM is the most used and versatile method for different goals, classification or prediction.
- * EEG and MEG data was rarely used, most articles contained research on fMRI data.
- * Machine learning methods used for fMRI data could be applied to EEG and MEG data.
- * To improve accuracy of classification results deep learning methods could be used.

