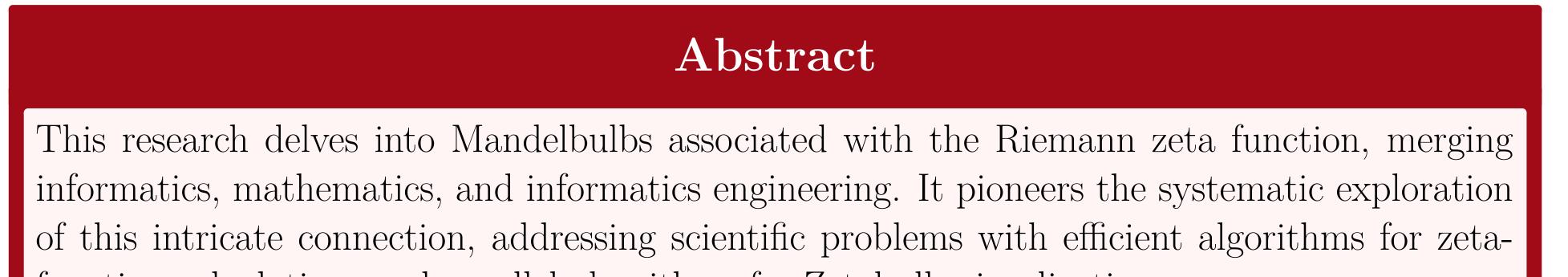


# Visualization of Zetabulbs: Mandelbulbs associated with the Riemann zeta function

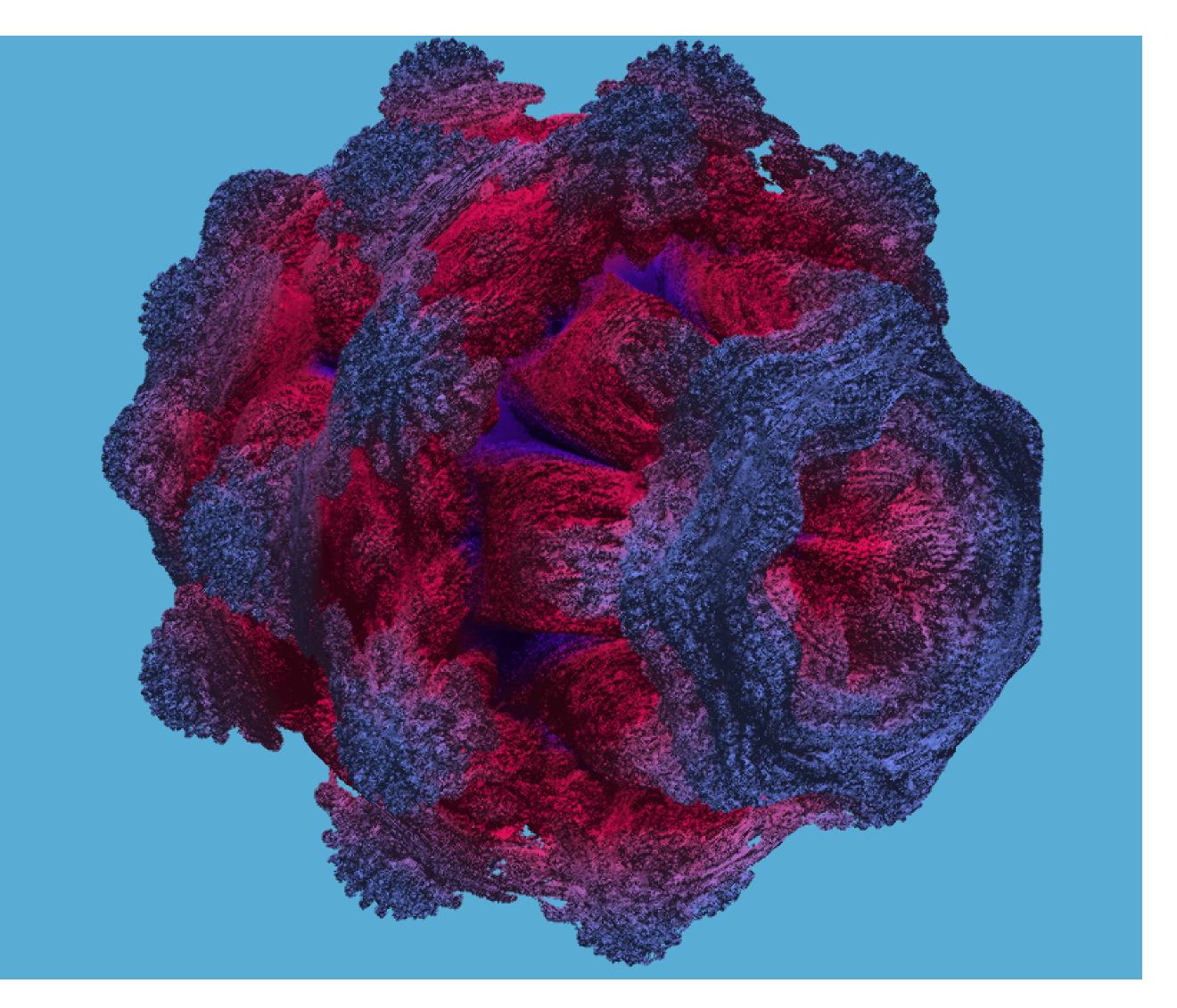
Lukas Kuzma, Martynas Sabaliauskas, Igoris Belovas

E-mails: igoris.belovas@mif.vu.lt, martynas.sabaliauskas@mif.vu.lt, lukas.kuzma@mif.vu.lt

Vilnius University, Institute of Data Science and Digital Technologies



# Visualizations of the Mandelbulbs and Zetabulbs





# Introduction

The aim of this work is to generate and explore Mandelbulbs associated with the Riemann zeta function (Zetabulbs). The main tasks are:

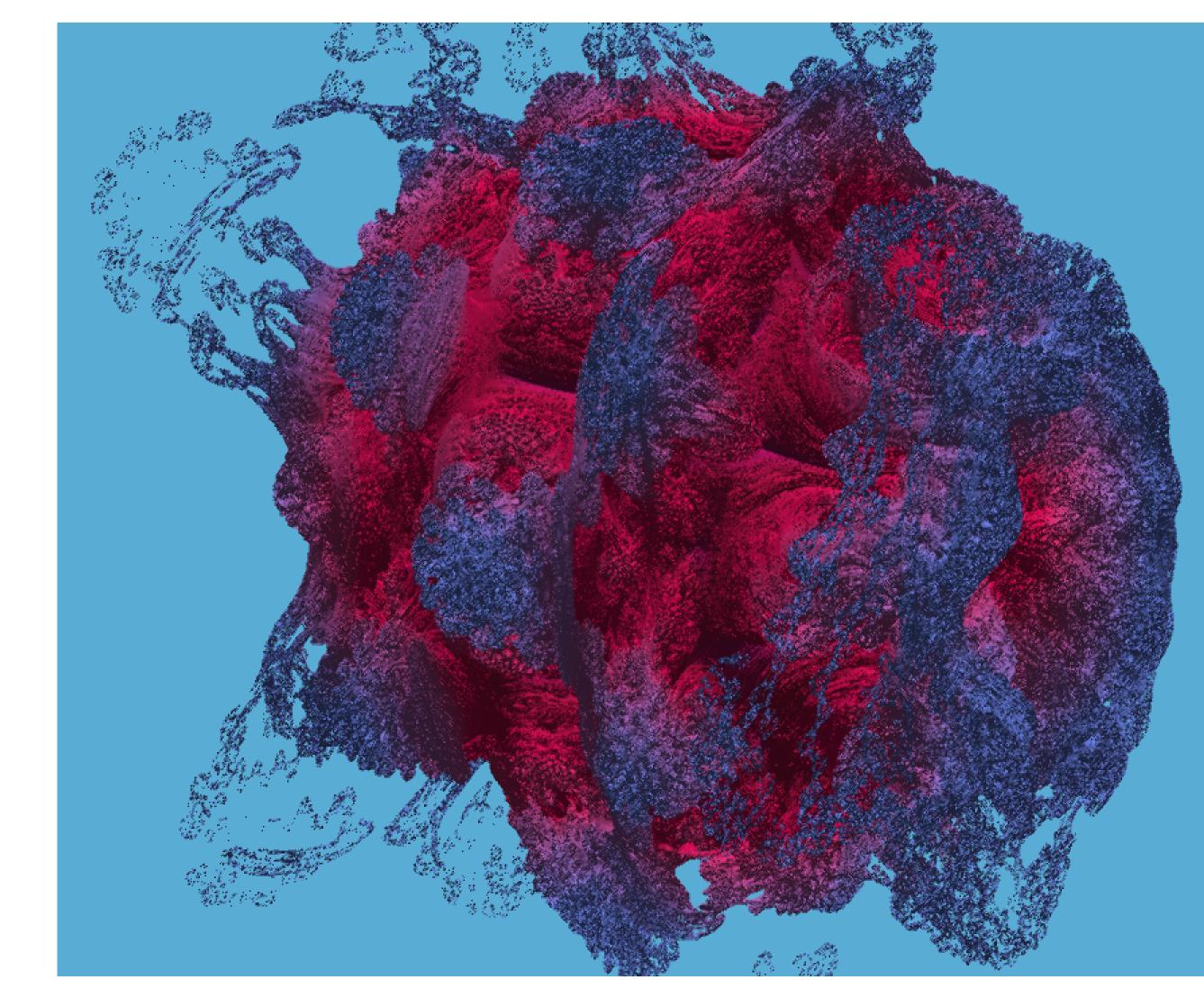
- Implementation of GPU-based version of the modified Borwein algorithm for the computation of the Riemann zeta function.
- Construction and realization of efficient algorithms for the real-time generation of the Mandelbulb images.
- Association of the Mandelbulbs to the Riemann zeta function.
- Visualization of the Zetabulbs.
- Exploration of newly received fractal structures.

Let  $s \in \mathbb{C}$ . The Riemann zeta function is defined for  $\sigma > 1$  by the Dirichlet series or the Euler product,

 $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1},$ 

and by analytic continuation elsewhere, except for the pole at s = 1.

Figure 1: 8<sup>th</sup> degree Mandelbulb



### Three dimensional Mandelbrot set

In 1997 Jules Ruis discovered a method (which was later improved by Paul Nylander and Daniel White), to visualize an interpretation of the three-dimensional Mandelbrot set using spherical coordinates.

 $v^{n} = r^{2} \langle \sin(\theta n) \cos(\phi n), \sin(\theta n) \sin(\phi n), \cos(\theta n) \rangle,$ 

where

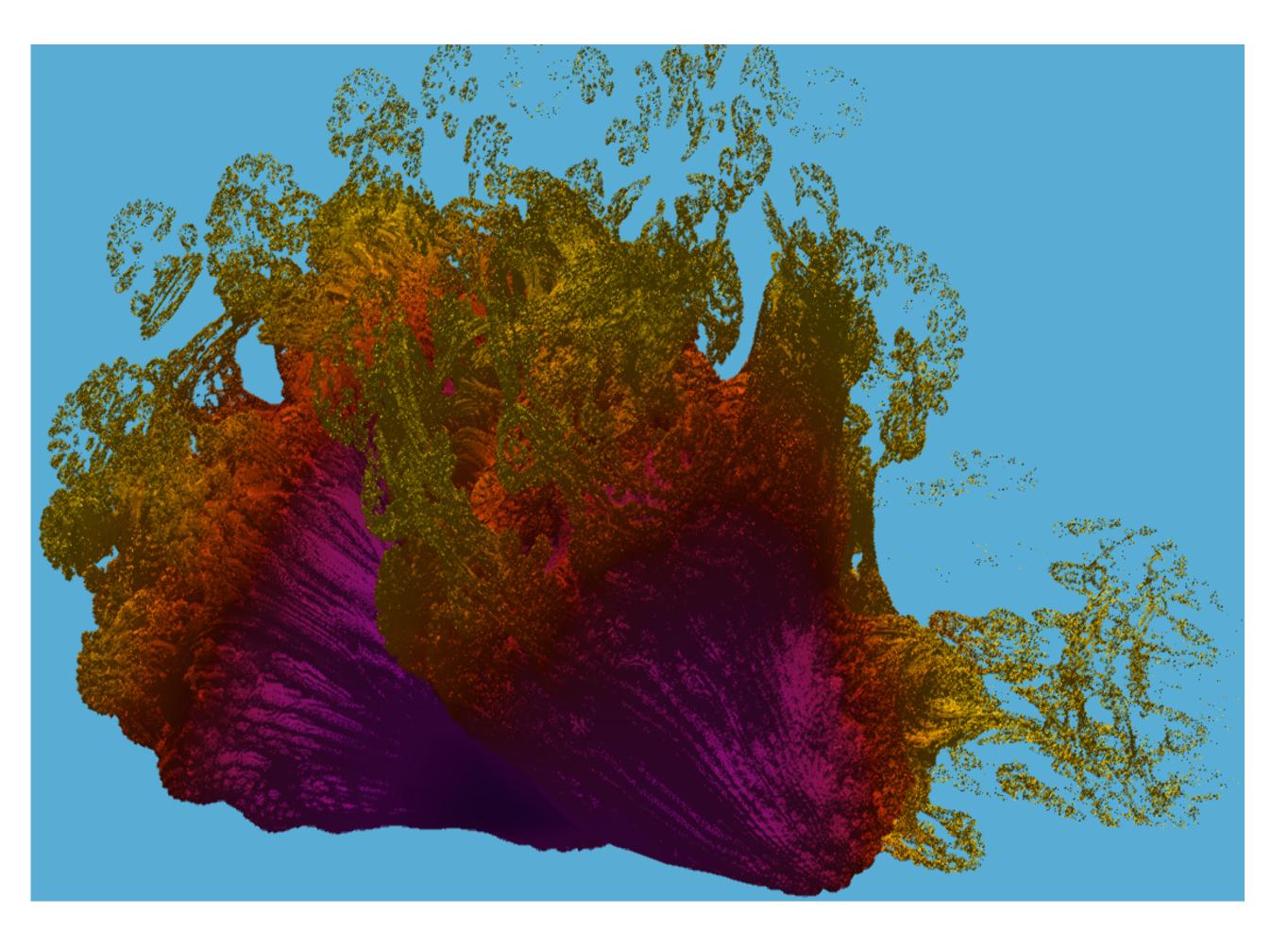
 $r = \sqrt{x^2 + y^2 + z^2}, \quad \theta = \arctan(\sqrt{x^2 + y^2}/z), \quad \phi = \arctan(y/x).$ 

Let **SDFMandelbulb**(s, p, k) be a signed distance function of a Mandelbulb. Here s - the threedimensional coordinates of the origin point, p - the power of the Mandelbulb, k - the maximum number of iterations.

#### **Definition of the Zetabulbs**

The association of the complex plane and the Cartesian coordinate system can be accomplished in two steps. First, we compute the Riemann zeta function value z for an argument somehow connected to the point c. Next, we construct a new point s and compute the signed distance function of a Mandelbulb for this point. An example of this association is presented in following algorithm. Let s - the three-dimensional coordinates of the origin point, p - the power of the Mandelbulb, k - the maximum number of iterations, c - complex number used to associate the Mandelbulb with the real and imaginary surfaces of the Riemann zeta function. The signed distance function can be expressed as follows:

Figure 2: Zetabulb centered on the first non-trivial zero



def **SDFZetabulb**(s, p, k, c):  $z \leftarrow \zeta(\Re c + s_x + i(\Im c + s_y)),$   $s \leftarrow (\Re z, \Im z, s_z),$ **return SDFMandelbulb**(s, p, k).

# **Conclusion and discussion**

Figures 1 and 2 has been generated using our implementation.Can you find similarities and differences between them?Does the figure 1 resemble any Hollywood movie?

#### Figure 3: Closeup of a Zetabulb with c = (1.5 + 75.65i)