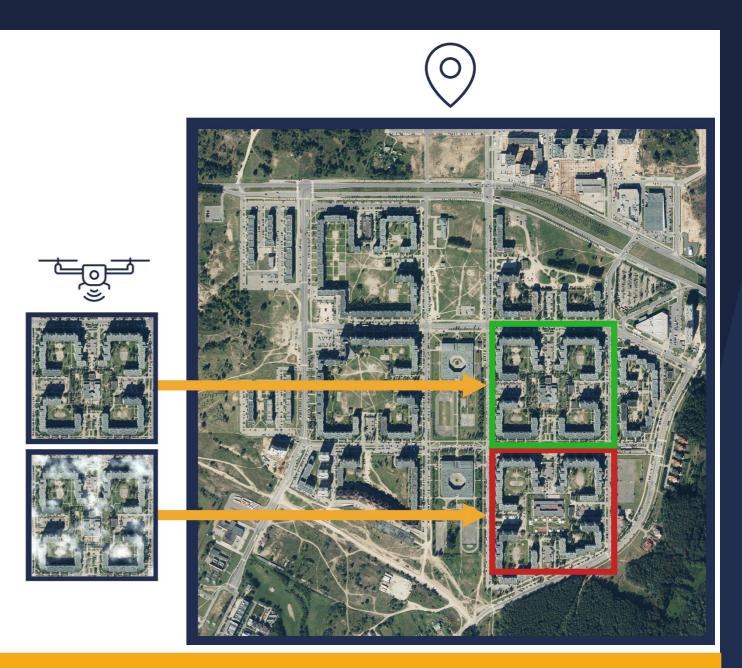
Aerial Image Similarity Estimation Using Cloud Removal Methods Dominykas Kaminskas, Vytautas Valaitis


Map-based aerial vehicle localization: images taken by on-board cameras during flight are compared to an aerial map to find similarities between them. However, the accuracy of a map-based approach decreases during cloudy weather conditions. Removing clouds using neural networks and generative image inpainting can increase the amount of information found in aerial images.

Research stages:

Vilnius University

Figure 1. The same image with generated clouds is misidentified by the neural network

dataset

accuracy

ſ	\mathbb{Z}
L	
L	
L	
L	

1. Collect dataset

- Part of Vilnius aerial map (25 km²) was cut into smaller images (224px x 224px) with overlap.
- Images were grouped into triplets for training: anchor images were taken from a 2013 map, while positive and negative images were taken from a 2016 map (Fig 3).
- Dataset contained more than 20,000 images.

2. Generate clouds

- Since it is difficult to find a pair of identical images with different weather conditions it was decided to generate clouds
- SatteliteCloudGenerator^[2] tool was used to create realistic clouds.
- It is based on structural noise and has various parameters such as colour, density and transparency for different cloud formations.
- Given an original image it returns a cloudy image, a cloud mask and a shadow mask as a result.

3. Remove clouds

- CloudGAN model was used to remove clouds from images.
- It is a modified version of DeepFill network^[3] that was additionally trained on datasets intended for cloud detection and cloud removal tasks.
- Cloud mask has to be supplied for a cloud removal method to

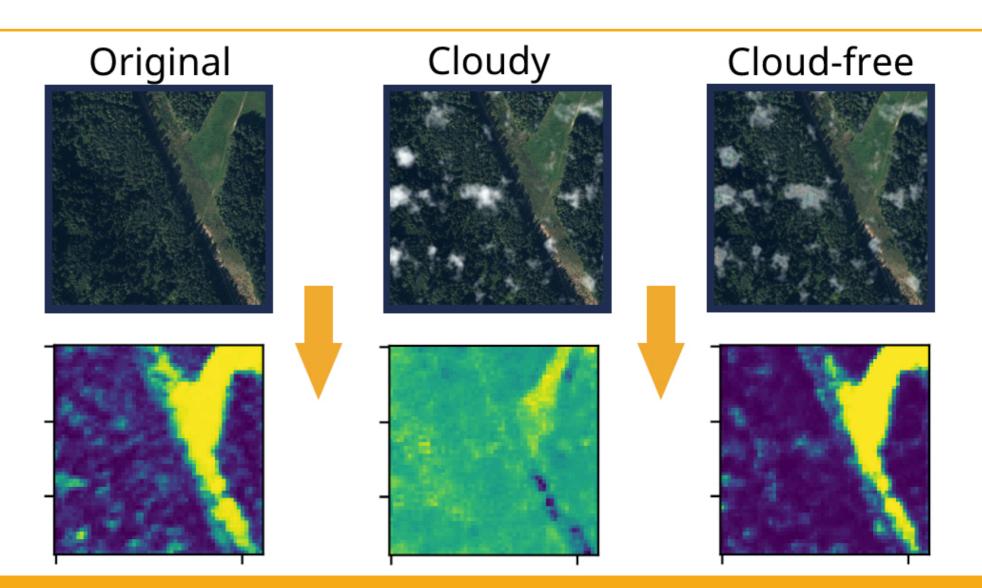


Figure 2. EfficientNet-B2 (59) (0) network extracted feature maps (bottom) for given aerial images (top). The feature map of a cloudfree image closely resembles the feature map of an original image

$$loss = \sum_{i=1}^{N} [\|f(a_i) - f(p_i)\|_2^2 - \|f(a_i) - f(n_i)\|_2^2 + \alpha]$$

Figure 3. Triplet loss function used additionally train each network with a custom aerial image dataset. Here *a_i* represents anchor image, p_i - positive image, p_i - negative image, α - margin value

Table 1. Accuracy of different convolutional neural network

- work.
- Models fail to provide realistic results when > 40% of the input image is covered by clouds.

4. Calculate accuracy

- Precision@K recommendation system was implemented to determine the accuracy of each network: 1000 random points were chosen on a map and cut out to serve as input images; for each input image the model had to return 5 most similar images from a dataset; an image was considered accurate if the shift between input and output images was less than 15m.
- The same experiment was repeated 3 times with different • datasets: original, cloudy and cloud-removed (Tab 1).

configurations

Network	Removed layers	Frozen layers	Original	Cloudy	Cloud-free
MobileNet	35	0	97.8%	87.7%	94.2%
	54	0	99.2%	96.5%	97%
EfficientNet-V2-B0	30	30	95%	84.8%	83.2%
	71	30	97.5%	94.5%	83.6%
VGG-16	10	10	99.2%	88.6%	87.2%
	14	14	97.6%	90.5%	90.8%
ResNet-50	50	38	99.7%	92.1%	85.8%
	80	38	93.7%	92.9%	90.6%
<i>EfficientNet-B2</i>	59	0	88.8%	67.2%	93.6%
	68	0	84.8%	80.4%	87.8%

References

[1] V. Valaitis, V. Marcinkevičius, R. Jurevičius. Learning Aerial Image Similarity Using Triplet Networks. 2020-02, p. 195-207. ISBN 978-3-030-40615-8.

[2] Czerkawski, M.; Atkinson, R.; Michie, C.; Tachtatzis, C. SatelliteCloudGenerator: Controllable Cloud and Shadow Synthesis for Multi-Spectral Optical Satellite Images. Remote Sensing. 2023, 15, 4138.

[3] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, T. S. Huang. Free-form image inpainting with gated convolution. Proceedings of the IEEE/CVF international conference on computer vision. 2019, p. 4471–4480.

Contacts

- dominykas.kaminskas@mif.stud.vu.lt
- vytautas.valaitis@mif.vu.lt