
NET-CONSTRAINED CLUSTERING PROBLEM

Mindaugas Kepalas1, Julius Žilinskas1

1Institute of Data Science and Digital Technologies, Vilnius University

NET-CONSTRAINED CLUSTERING PROBLEM

Mindaugas Kepalas1, Julius Žilinskas1

1Institute of Data Science and Digital Technologies, Vilnius University

The problem

Probably everyone who has ever taken a course or got in touch
with data science has heard about the famous k-means algo-
rithm. It is a beautiful, fast and intuitive algorithm, which is
used for finding structure in the data, e.g., for determining (ini-
tially unknown) groups of similar objects.

More precisely, k-means algoritm seeks to solve the so
called minimum-sum-of-squares clustering (MSSC) prob-
lem: given a set of points P1, P2, . . . , PN with corresponding
weights w1, w2, . . . , wN and given the number of groups K, we
want to partition all the elements into K clusters C1, C2, . . . , CK
with centers Q1, Q2, . . . , QK, so that the loss of the solution is
minimal. Mathematically, the goal is to solve the following opti-
mization problem:

min
(C1,Q1),...,(CK,QK)

K∑
k=1

∑
i∈Ck

wi ‖Pi −Qk‖22 (1)

In our research, we study MSSC problems for which the lo-
cations of the centers are constrained to a subset of the
space; in the illustrations, this set is defined by a union of a set
of segments in the plane; we call it a “net” and label with letter
N . Our problem is thus mathematically stated as follows:

min
(C1,Q1),...(CK,QK)

K∑
k=1

∑
i∈Ck

wi ‖Pi −Qk‖22 s.t. Qk ∈ N (2)

Problem instance and its solution are illustrated in Figure 1.

(a) Some points with weights
and the net-constraint

(b) A possible solution of the
problem

Figure 1: Problem illustration. Note that
cluster-centers satisfy the property Qk ∈ N

Net-constrained k-means algorithm

We will solve the problem shown in Figure 1(a) with a net-
constrained k-means algorithm. Any k-means-type algorithm
starts with an

Initialization Step: sample K random centers Qk ∈ N ,
which will be used to define the initial clusters [Figure 2(a)]

One can imagine that initialized centers define Voronoi cells as
in Figure 2(b) (those cells are only shown here for illustration
purposes and do not have to be computed by the algorithm).

Next, iteratively apply the following two steps:

Assignment Step: given (fixed!) cluster-centers Qk, deter-
mine (update) clusters C1, C2, . . . , CK by assigning each
point Pi to the closest center (cluster) [Figure 2(c)]

Location Step: for fixed clusters C1, C2, . . . , CK , optimize
(update) cluster centers Q1, Q2, . . . , QK [Figure 2(d)]

Figure 2(e) illustrates that after the Location Step, the clos-
est center for a point might change (e.g., a few red points from
the figure are now in the green cell). Therefore, in the re-
Assignment Step [Figure 2(f)] those points “move” to another
cluster. Now again follows Location Step [Figure 2(g)] and etc.

One can convince himself/herself, that after either Assignment
Step or Location Step, the loss defined in (1) decreases or
stays the same (in the later case the algorithm is terminated).

In Assignment Step (2(e)⇒ 2(f)), the distance can only de-
crease for each point (because each Pi can only “move” to a
closer center - otherwise stays at the old cluster if it cannot im-
prove!), what results that the total loss cannot increase.

Now lets analyze Location Step (see 2(d), 2(g)). Lets define
the loss for cluster Ck given an arbitrary center Q ∈ R2:

Lk (Q) :=
∑

i∈Ck wi ‖Pi −Q‖22
Initially, we have centers Qinit

k (gray squares) with loss

Lk

(
Qinit

k

)
. We now define Qopt

k (coloured squares):

Qopt
k := arg minQ [Lk (Q) s.t. Q ∈ N ]

Since initially Qinit
k ∈ N , we have Lk

(
Qopt

k

)
≤ Lk

(
Qinit

k

)
,

and
∑K

k=1Lk

(
Qopt

k

)
≤ ∑K

k=1Lk

(
Qinit

k

)
follows.

Because the loss (1) decreases with every step and is bounded
from below by 0, the algorithm converges.

(a) Initialize: sample
random centers on the net

(b) Voronoi cells generated
by random centers

(c) Assignment Step:
assign points to the centers

(d) Location Step: clusters
determined; optimize centers

(e) Optimized centers generate new Voronoi
cells, some points “move” to other clusters

(f) Assignment Step:
update point assignment

(g) Location Step: clusters
updated; optimize centers

Figure 2: Illustration of net-constrained k-means
algorithm in R2

1

1

1

1 1

1

1 1 12

2

2

2

3 3 3 43

1 3 1 3 4

3

1

1

1 12

2

2

3 4

1 3 1 3 4

3

11 2

2 2 2 2

222 543

Figure 3: Branch-and-bound tree. Full tree for the
first 4 points and some parts of it for the 5th point

(a) Locally-optimal solution.
Loss: 2.055132

(b) Locally-optimal solution.
Loss: 2.271582

(c) Locally-optimal solution.
Loss: 2.459568

(d) Globally-optimal solution.
Loss: 2.034595

Figure 4: Illustration that k-means algorithm does
not guarantee a globallly-optimal solution. Note also
that in all of the cases convex-hulls of the clusters

are within Voronoi-cells of the centers

Global solution

We have presented a method to find a solution to problem
(2): the net-constrained-k-means algorithm. Given initial
(random) cluster-centers, this algorithm finds a solution which
cannot be improved by applying Assignment Step or Loca-
tion Step: a locally-optimal solution. However, this solution
is not guaranteed to be globally-optimal, as is illustrated in
Figure 4: here one can see four different local solutions.

Nevertheless, in Figure 3(d) we claim that the presented so-
lution is globally-optimal: this is the best solution possible for
the given problem. How do we know that?

One way to proove this would be to formulate problem (2)
as a mixed-interger-quadratically-constrained-programming
(MIQCP) problem and then use the available academic-free
or commercial solvers suitable for solving such problems.

However, our attempts to solve the problem with gurobi were
rather disappointing. By running the solver on different prob-
lem instances, we have discovered that gurobi can only solve
very small problems.

Thus, we decided to try to solve the problem using branch-
and-bound paradigm. The developed algorithm was used to
prove that solution in Figure 3(d) is globally-optimal.

We note that from gurobi experiment time data we estimated
that its MIQCP solver would take more than 1000 years to re-
port (proove) the globally-optimal solution for the problem in-
stance in Figure 4.

Branch-and-bound algorithm

Suppose that in the begining, all points are “unassigned” and
all clusters are “closed”. A cluster is “opened” if it is assigned
a point, and lets agree that the clusters must be opened by
increasing index: firstly we must open C1, then C2, C3 and etc.

Lets consider the first pointP1. From the rules we have agreed
upon, we have that P1 must be placed in C1.
For the second point P2 there are two possibilities:

Assignment to an already opened cluster C1
Openning a new cluster: we open cluster C2 by assigning
point P2 to it

For other pointsP3, . . . , PN , we proceed in the same fashion:
we assign a point into one of the opened clusters, or, if possi-
ble (e.g., the last cluster is still not opened), assign a point to
a new cluster.

This procedure is illustrated in Figure 3: the root corresponds
to P1, the nodes at the second level correspond to P2 and
etc. The (full) tree enumerates all possible partitions of N el-
ements into K non-empty subsets and contains

{
N
K

}
(Striling

number of the second kind) “leaves” - which is a huge number.
We use two main ideas for “cutting” the branches of the tree:

No-improvement cut: cut the branch if its current loss is
already larger than the loss of the best known solution

Convex-hull overlap cut: cut the branch if any of the
convex-hulls of the clusters overlap [see Figure 5]

While No-improvement cut is simple and intuitive, one can
also proove that Convex-hull overlap cut is valid, too. In any
local solution (⇒ in any global as well), each point is assigned
to the closest center, thus: i ∈ Ck ⇒ Pi ∈ VoronoiCell (Qk)

(for any point Pi, any cluster Ck). By the convexity property of
Voronoi-cells, for any set of points within the cell we have:

{Pi : i ∈ Ck} ⊂ VoronoiCell (Qk) ⇒
ConvexHull

(
{Pi : i ∈ Ck}

)
⊂ VoronoiCell (Qk) ∀k (3)

Because Voronoi-cells of cluster centers do not overlap but
only touch each other, neither can overlap the convex hulls of
cluster members in any locally-optimal solution [see Figure 4].

(a) Valid branch (b) Invalid branch

Figure 5: Illustration of Convex-hull overlap cut.
After inserting the red-starred point into one of the
clusters, convex-hulls start to intersect - any further
point assignment can not lead to a globally-optimal
solution and we can cut the corresponding branch


