TRANSITION FROM PROOF-OF-WORK TO PROOF-OF-STAKE **BLOCKCHAINS: WHY IT MATTERS MORE THAN EVER?**

ETH PoS

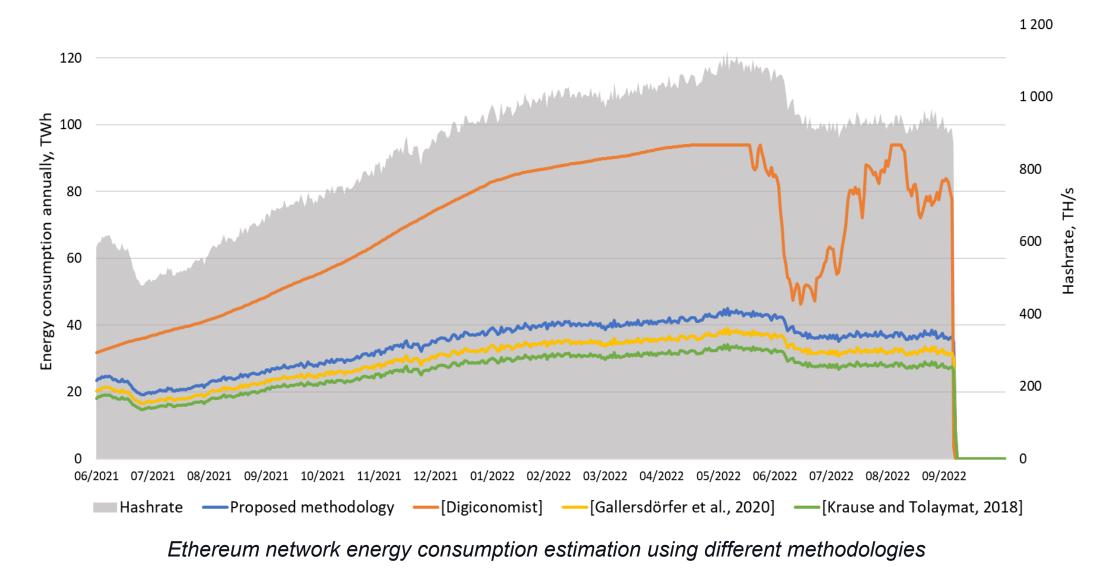
Ernestas FILATOVAS, Aleksandr IGUMENOV, Viktor MEDVEDEV, Remigijus PAULAVIČIUS

Institute of Data Science and Digital Technologies, Vilnius University

ernestas.filatovas@mif.vu.lt, aleksandr.igumenov@mif.vu.lt, viktor.medvedev@mif.vu.lt, remigijus.paulavicius@mif.vu.lt

MOTIVATION AND AIM

Blockchain and underlying distributed ledger technology attracted widespread attention recently due to its transparency, decentralisation, and security properties. It still faces many challenges that have to be solved.


The most **important current challenges** are:

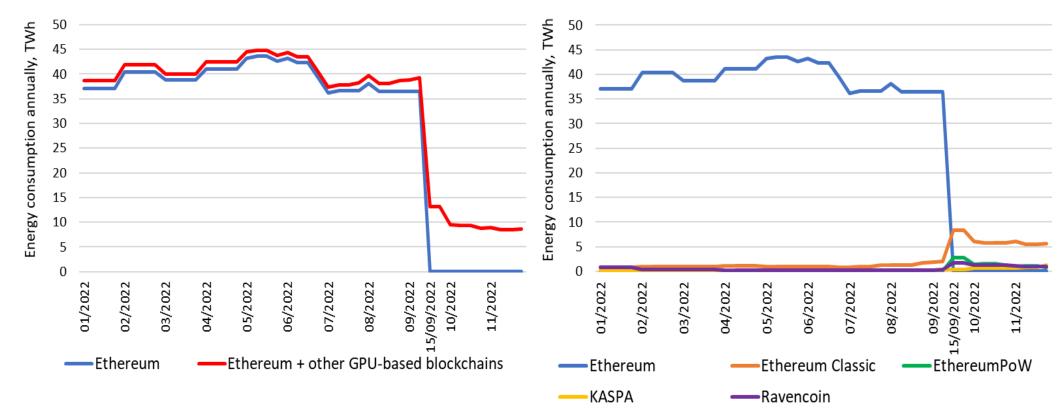
- 1. The enormous energy consumption of Bitcoin and other Proof-of-Work (PoW) based blockchain networks.
- 2. The global energy crisis.

Ranking of Bitcoin and Ethereum among countries based on annual electrical energy consumption as of July 2021 [Kohli, et al., 2022]

Rank	Country	Population (Millions)	Energy (TWh)	Share (%)
0	World	7,878.2	23,398.00	100.00
1	China	1,444.9	7,500.00	32.05
2	U.S.A	332.9	3,989.60	17.05
3	India	1,366.4	1,547.00	6.61
20	Taiwan	23.8	237.55	1.01
21	Vietnam	98.2	216.99	0.92
22	South Africa	60.1	210.30	0.89
23	Bitcoin + Ethereum	N.A.	190.13	0.81
24	Thailand	69.9	185.85	0.79
25	Poland	37.80	153.00	0.65
26	Egypt	104.3	150.57	0.64
27	Malaysia	3.1	147.21	0.62
28	Bitcoin	N.A .	135.12	0.57
29	Sweden	10.2	131.79	0.56
49	Switzerland	8.7	56.35	0.24
50	Ethereum	N.A .	55.01	0.24
51	Romania	19.1	55.00	0.23

COMPARISON OF THE ETHEREUM NETWORK ENERGY CONSUMPTION ESTIMATION WITH DIFFERENT APPROACHES

IMPACT OF THE ETHEREUM NETWORK TRANSITION TO PROOF-OF-STAKE

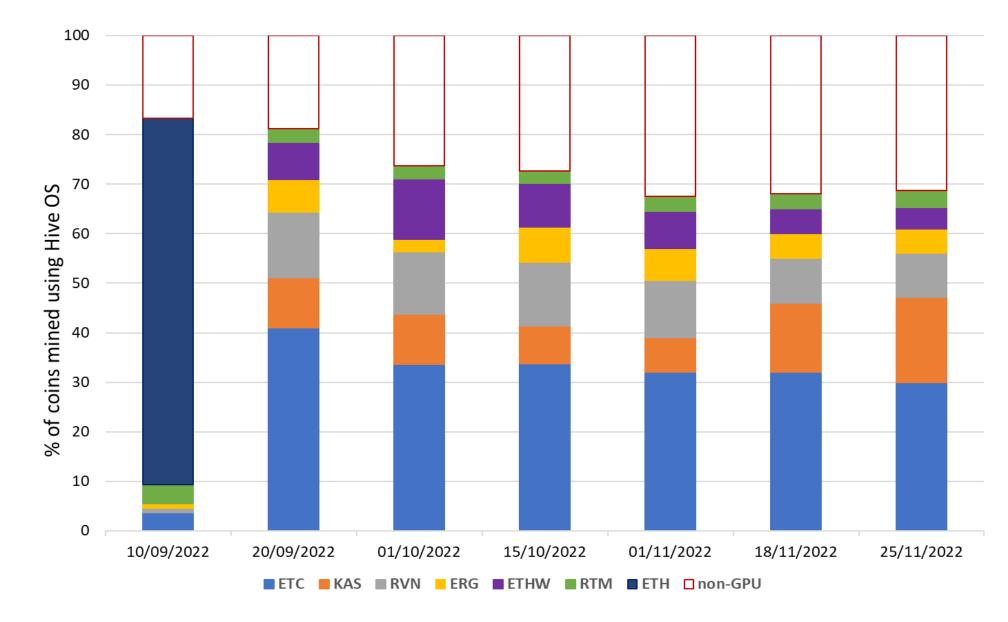


- Accurately estimating blockchains' energy consumption is more relevant than ever.
- The main aim of this work is to propose a general and precise methodology for PoW-based blockchain energy consumption estimation.

PROPOSED METHODOLOGY

- It is based on **continually updated statistics** provided by **Hive OS** on the use of various GPUs for mining.
- It considers actual equipment utilized for mining, unlike other methodologies that assume that **only profitable equipment** is involved in the mining process.

- On 09/15/2022, the Ethereum network moved from PoW to PoS.
- This caused a transformation in the mining power distribution and energy consumption of all mining-based blockchains.
- We use our proposed methodology to **demonstrate the impact on the remaining** major GPU-based blockchains.



Energy consumption of GPU-based networks before and after Ethereum transition to PoS

- After the Ethereum network transitioned to PoS, the energy consumption of other GPU-based blockchain networks increased.
- · However, the total energy utilized for mining on GPUs decreased drastically.

CONCLUSIONS

- . The proposed methodology estimates energy consumption more realistically and precisely.
- Using our methodology, it was shown that Ethereum's transition to PoS caused a significant decrease in energy consumption on GPU-based mining.
- Our methodology could be adapted for any PoW-based blockchain network.

GPU-based blockchains mining distribution before and after Ethereum transition to Proof-of-Stake (PoS) [Hive OS statistics, 2022]

ACKNOWLEDGMENT

This research has received funding from the Research Council of Lithuania (LMTLT), agreement No. S-MIP-21-53.

REFERENCES

- Alves, B. (2022) EU: Monthly Electricity Prices by country 2022, Statista. Statista. Available at: <u>https://</u> www.statista.com/statistics/1267500/eu-monthly-wholesale-electricity-price-country (Accessed: November 28, 2022).
- Digiconomist (2021) Ethereum Energy Consumption Index Digiconomist. URL: https://digiconomist.net/ ethereum-energy-consumption (Accessed: November 28, 2022).
- Ethereum community (2022) Ethereum Energy Consumption, ethereum.org. Ethereum community. Available at: https://ethereum.org/en/energy-consumption (Accessed: November 28, 2022).
- Gallersdörfer, U., Klaaßen, L., Stoll, C. (2020) Energy consumption of cryptocurrencies beyond bitcoin, Joule 4, 1843–1846. https://doi.org/10.1016/j.joule.2020.07.013.
- Hive OS statistics (2022) Hive OS statistics | Hive OS. Available at: https://hiveon.com/statistics/.
- Krause, M. J., Tolaymat, T. (2018) Quantification of energy and carbon costs for mining cryptocurrencies, Nature Sustainability, 1, 711–718. <u>https://doi.org/10.1038/s41893-018-0152-7.</u>
- Kohli, V., Chakravarty, S., Chamola, V., Sangwan, K. S., & Zeadally, S. (2022) An analysis of energy consumption and carbon footprints of cryptocurrencies and possible solutions. In Digital Communications and Networks. Elsevier BV. https://doi.org/10.1016/j.dcan.2022.06.017.