
We propose an enhancement to the keyword-based commit
classifica�on approach by extending the set of keywords by
exploi�ng seman�c similari�es between the words of commit
messages. Word embedding vectors were generated by training on a
domain-specific corpus containing 2.5 million commit messages from
500 code repositories [3].
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BACKGROUND
During a so�ware's life�me, source code management tools facilitate
managing so�ware changes. Changes (i.e., commits) are performed
for various purposes [1] and are accompanied by short messages
from commi�ers communica�ng the code changes in natural text:
• adap�ve commit (to adapt to changes in the environment)

Example message: "Implement Scheduler method with dueTime"

• correc�ve commit (to fix bugs, faults, and defects)
Example message: "Fix autoConnect calling onStart twice"

• perfec�ve commit (to improve so�ware quality a�ributes)
Example message: "Refactor test to use CountDownLatch instead of Thread.sleep"
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CHALLENGE

PRELIMINARY RESULTS
While the exis�ng approach (t=1) showed that only 65% of the
sample commit messages examined contained at least one keyword,
the applied approach demonstrated that up to 82% contained at
least one of the extended keywords.

To evaluate the proposed approach, different machine learning
models were built on a labeled dataset of 1793 commits [4] using
Random Forest, Gradient Boos�ng Machine, and CART algorithms.

Comparison with the exis�ng approach showed that enriching
keywords with the words seman�cally closest to them can benefit
the predic�ve performance of the models while providing deeper
insight into how developers use wri�en communica�on through
commit messages.

(a) Exis�ng approach
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(b) Proposed approach
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Figure 5. A comparison of per-class accuracy of the classifica�on models using Gradient Boos�ngMachine between
the exis�ng (a) and the proposed (b) approach (N=15, M=5, t=0.55)

Figure 1. A high-level overview of the exis�ng keyword-based approach
Figure 4. The performance of classifica�on models (mean F-measure) with 3-�mes repeated 5-fold cross-valida�on

Algorithm 1. The feature extrac�on process of the proposed approach

Input: list of keywords: keywords = [k₁, k₂,..., k₂₀]; limit of the most similar words to target keyword:N; adjusted limit
of the most similar words to target keyword without duplica�ons: M; domain-specific word embedding model:
embedding_model; commit message: message; labeled dataset: dataset; similarity threshold: t
Output: extracted features features(N,M,t) = [featurek₁ , featurek₂ , ..., featurek₂₀ ]
for each keyword k in keywords do

extended_keywordk,N = [[wk,1 , sim(k,wk,1 )], ..., [wk,N , sim(k,wk,N )]])⇽ for target keyword k find N most similar
words wk,iϵ{1, ..., N} in embedding_model based on cosine similarity sim(k,wk,i )

for each k ϵ {1, ..., 20} in extended_keywordsk,N do
m⇽ 0
whilem < M do

for each word wk,i in [wk,i, sim(k,wk,i )] do
if wk,i is equal to k' then

con�nue with next word
if wk,i is equal to w'k',i' then

if sim(k,wk,i) < sim(k',w'k',i') then
con�nue with next word

append [wk,i, sim(k,wk,i)] to extended_keywordk,M

m⇽m + 1
for eachmessage in dataset do

for each k ϵ {1, ..., 20} in extended_keywordk,M do
ifmessage contains keyword k or any word wk,i where sim(k,wk,i) >= t then

featurek⇽ True
else

featurek⇽ False

Keywords extracted from commit messages are good indicators of
commit intent. The exis�ng keyword-based approach uses a set of 20
keywords, defined based on word frequency analysis, to classify
commits [2]. However, developers o�en use jargon terms, acronyms,
misspelled words, and synonyms or related words, making it
challenging to classify based on a small set of fixed keywords alone.

Figure 2. Keywords presence in
sample commits considering
different similarity thresholds
(N=15, M=5)

PROPOSED APPROACH

Table 1. Examples of extended keywords (N=15, M=5)

Keyword The M most similar words to target keyword

add ad (sim=0.93), updat (sim=0.63), extend (sim=0.61), introduc (sim=0.60), includ (sim=0.55)
npe nullpointerexcept (sim=0.89), concurrentmodifica�onexcept (sim=0.73), classcastexcept

(sim=0.72), crash (sim=0.71), indexouto�oundsexcept (sim=0.68)

refactor simplifi (sim=0.76), extract (sim=0.71), cleanup (sim=0.67), move (sim=0.65), factor (sim=0.65)

Figure 3. Per-keyword distribu�on of the number of included words extending
keywords considering different similarity thresholds (N=15, M=5)
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