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BACKGROUND

During a software's lifetime, source code management tools facilitate
managing software changes. Changes (i.e., commits) are performed
for various purposes [1] and are accompanied by short messages
from committers communicating the code changes in natural text:

e adaptive commit (to adapt to changes in the environment)
Example message: "Implement Scheduler method with dueTime"

e corrective commit (to fix bugs, faults, and defects)
Example message: "Fix autoConnect calling onStart twice"

e perfective commit (to improve software quality attributes)
Example message: "Refactor test to use CountDownLatch instead of Thread.sleep”

CHALLENGE

Keywords extracted from commit messages are good indicators of
commit intent. The existing keyword-based approach uses a set of 20
keywords, defined based on word frequency analysis, to classify
commits [2]. However, developers often use jargon terms, acronymes,
misspelled words, and synonyms or related words, making it
challenging to classify based on a small set of fixed keywords alone.
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Figure 1. A high-level overview of the existing keyword-based approach

PROPOSED APPROACH

We propose an enhancement to the keyword-based commit
classification approach by extending the set of keywords by
exploiting semantic similarities between the words of commit
messages. Word embedding vectors were generated by training on a
domain-specific corpus containing 2.5 million commit messages from
500 code repositories [3].

Algorithm 1. The feature extraction process of the proposed approach

Input: list of keywords: keywords = [k, k3, ..., k20]; limit of the most similar words to target keyword: N; adjusted limit
of the most similar words to target keyword without duplications: M; domain-specific word embedding model:
embedding_model, commit message: message; labeled dataset: dataset; similarity threshold: ¢t
Output: extracted features features(N,M,t) = [feature,, feature,,, ..., feature,, ]
for each keyword k in keywords do
extended_keywordy = [[wy1, sim(k,w, )], ..., [Win, sim(k,win)]]) < for target keyword k find N most similar
words Wy, .. n; in embedding_model based on cosine similarity sim(k,w, ;)
foreach k€{1, ..., 20} in extended_keywords, do
m<0
while m<Mdo
for each word w;,;in [wy, sim(k,w,;)] do
if w,;is equal to k'then
| continue with next word
if wy;is equal to w'y.»then
if sim(k,wy;) < sim(k’,w'.) then
| continue with next word
append [w,, sim(k,w, ;] to extended_keyword,
mm+1
for each message in dataset do
foreach k€{1, ..., 20} in extended_keyword, ,, do
if message contains keyword k or any word w,; where sim(k,w,;) >=t then
| feature, — True
else
|  feature, « False

Table 1. Examples of extended keywords (N=15, M=5)

Keyword The M most similar words to target keyword
add ad (sim=0.93), updat (sim=0.63), extend (sim=0.61), introduc (sim=0.60), includ (sim=0.55)
npe nullpointerexcept (sim=0.89), concurrentmodificationexcept (sim=0.73), classcastexcept

(sim=0.72), crash (sim=0.71), indexoutofboundsexcept (sim=0.68)
refactor simplifi (sim=0.76), extract (sim=0.71), cleanup (sim=0.67), move (sim=0.65), factor (sim=0.65)
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PRELIMINARY RESULTS

While the existing approach (t=1) showed that only 65% of the
sample commit messages examined contained at least one keyword,
the applied approach demonstrated that up to 82% contained at
least one of the extended keywords.
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Figure 3. Per-keyword distribution of the number of included words extending
keywords considering different similarity thresholds (N=15, M=5)

Figure 2. Keywords presence in
sample commits considering
different similarity thresholds
(N=15, M=5)

To evaluate the proposed approach, different machine learning
models were built on a labeled dataset of 1793 commits [4] using
Random Forest, Gradient Boosting Machine, and CART algorithms.
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Figure 4. The performance of classification models (mean F-measure) with 3-times repeated 5-fold cross-validation

Comparison with the existing approach showed that enriching
keywords with the words semantically closest to them can benefit
the predictive performance of the models while providing deeper
insight into how developers use written communication through
commit messages.
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Figure 5. A comparison of per-class accuracy of the classification models using Gradient Boosting Machine between
the existing (a) and the proposed (b) approach (N=15, M=5, t=0.55)
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