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The Problem

We want to place M cluster-centers on a net (represented
by little-squares) in a way so that the sum of distances
between cluster-members (represented by little-circles)
and their corresponding centers is minimal (see Fig. 1 for
an illustration).

More detailed explanation:
Suppose you have a network of roads N on the map

and a set of customers C = {Ci,Cy,...,Cy} with de-
mands dy,doy, ..., dy; the customers are located at points
C1,C9,...,CN in 2-dimensional plane (little-circles in Fig. 1).

To serve the customers, you are allowed to open M fa-
cilities F = {F1, Fy, ..., Fys} (little-squares in Fig. 1), each
with available max-supply s, s9,...,sy7. The places where
you can open the facilities are restrited by the network N : the
2-dimensional point F;, representing facility ¢, must satisfy
F; € N (seein Fig. 1 that each little-square is on a segment).

We are also given the operating cost f; > 0 of each fa-
cility: this is the cost of opening facility 2 (a facility has to be
opened if it is assigned at least one customer).

The cost of serving a single-unit of demand of customer
4 from facility ¢ is proportional to the distance between the
correspoinding points:

cij o< dist (1, C;) = ||F; = G|

We assume that the distance can be defined by Manhattan,
Euclidean or Infinity-norm.
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Fig. 1: Problem illustration.
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Net-Constraint Formulation

How can we mathematically represent the constraint
that a point P belongs to a 2-dimensional net \/'?

We suppose the net N consists of K line segments
By, Ey,...,Eg, N = U} E.. Each segment Ej; has
its starting point P, and its ending point ¢);. and can be
represented parametrically as

B ={(1 = ap) Py + aQy, oy €[0,1]}

Thus, any point P € E}. satisfies P = P + a.(Q). — P.) for
acertain 0 < a; < 1.

Now, lets introduce a binary variable ¢, € {0,1} and
lets consider the set

e P + o (Qp — Pr), 0 < ap < ¢y

When e = 1, {ekPk + O‘k(Qk — Pk)a 0<a < ek} = Ek-
When e;. = 0, {ekPk + ak(Qk — Pk:)a 0 << €k} = {O}

Thus, we introduce K binary variables e;. € {0,1}, k =
1,..., K, which indicate to which segment point P belongs:
e;. = 1, if the point P belongs to segment F;. and equals
0 otherwise. We assume that a point can only belong to a
single segment: this is achieved by adding the constraint
Z/é; e, = 1. (When P is the intersection point of two or
more segments, the segment is chosen arbitrary.)

To conclude, we can see that the net-point-set N = U§:1Ek
IS equal to the set

( K K )
S=a> Pty oplQp—Py) ¢y
k=1 k=1 )

here we require that Vk,e;. € {0,1},0 < a4 < e and
K _
D1k = 1.

Other Constraints and Variables

We assume that each customer can be served by only a
single facility. Thus, for each pair (¢,7), t = 1,..., M, j =
1,..., N, we introduce a binary variable z;; € {0, 1} which
equals 1 when facility ¢ supplies customer 5 and 0 otherwise.
The constraint that customer j is served by single facility is
then simple to formulate: we require that

M

» zy=1,j=12..N
1=1

We also define a binary variable o; € {0,1}, ¢ =1,..., M.
o; = 1 if facility 2 is opened and o, = 0 otherwise.

Mixed-Integer-Program (MIP)

With previous defintions and notations, we see that the
net-constrained facility location problem can be formulated
as follows:

find facility positions 77, F5, ..., Fy;y which

M 1 [~ M
minimize Z fioil + Z dj Z 2 HFZ — C]H
=1 =1 i=1 ]
subject to
net-constraints FI.F, ..., FyyeN
N
capacity-constraints Z d;jzi; < 805, 1=1,..., M
j=1
M
single-facility-constraints Y zj=1j=1,...,N
i=1

where o;, z;; are binary-variables:
0;, %5 € {0,1},e=1,....,. M, 5=1,...,N
It turns out that the above problem can be formulated as

* mixed-integer-programming problem (MIP) in case the
distance is Manhattan or Infinity-norm;

* mixed-integer-quadratically-constrained-problem
(MIQCP), in case the distance is Euclidean.

Estimated MIP solver time @ net_size = 100
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Fig. 2: Time contour-map (time in seconds).
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R?-statistic for the model In(T") = (M, N, K): 0.693
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MIP Problem Dimensions

Lets analyze the complexity of our MIP problem (in what fol-
lows, M is the number of facilities, NV is the number of cus-
tomers and K is the number of segments in network \).

 To define each constraint F; ¢ N, ¢ = 1,..., M, we
need to define net-variables:
— K binary variables for {e;.,k=1,... K},
— K continuous variables for {ay, k= 1,..., K},
— 2 variables for z, y-coordinates of facility F;.

net-constraints:

— K inequality-constraints «;. < ey,
— 2 equality-constraints for x, y-coords of facility F;,
— 1 equality-constraint Zé{zl e = 1.

In total:

Variables: M - K binary, (M + 2) - K continuous;
Constraints: M - K inequality, M - 3 equality.

* For each customer C;, j = 1,..., N, we need M bi-
nary variables z;;, « = 1,..., M. Each customer has a
single-facility constraint Zf\ﬁl zij = 1.

In total:

Variables: N - M binary;
Constraints: N equality.

« For each facility i, customer j pair (7, j) we define a vari-
able r;; == ||F; — C;l|. For infinity-norm distance (and
similarly for Manhattan), we need 4 equations:

FZ'.QZ — Ty < Cj.ZC,

Fi.x+ Tij 2 OJSC (2a)
Fiy+ Tij > ij (2b)
In total:

Variables: N - M continuous;
Constraints: 4 - N - M inequality.

MIP Problem Solving Time

MIP problem is NP-hard, thus we assume that time to solve
the net-constrained facility location is determined by the law

T(M, N, K) = exp?M:N.K)

Due to the number of variables and constraints discussed in
previous block, we take

©(M,N,K)=ay + ayM +ayN +agK +
+ 0N (M- N) + By (M - K)

Coefficients ag, ayr, an, ag, B, B3 are estimated from a
numerical experiment and results are presented in Fig. 2.



