

The Problem

We want to place M cluster-centers on a net (represented) by little-squares) in a way so that the sum of distances between cluster-members (represented by little-circles) and their corresponding centers is minimal (see Fig. 1 for an illustration).

More detailed explanation:

Suppose you have a network of roads $\mathcal N$ on the map and a set of customers $\mathcal{C} = \{C_1, C_2, \ldots, C_N\}$ with demands d_1, d_2, \ldots, d_N ; the customers are located at points C_1, C_2, \ldots, C_N in 2-dimensional plane (little-circles in Fig. 1).

To serve the customers, you are allowed to open M facilities $\mathcal{F} = \{F_1, F_2, \dots, F_M\}$ (little-squares in Fig. 1), each with available max-supply s_1, s_2, \ldots, s_M . The places where you can open the facilities are restrited by the network \mathcal{N} : the 2-dimensional point F_i , representing facility *i*, must satisfy $F_i \in \mathcal{N}$ (see in Fig. 1 that each little-square is on a segment).

We are also given the operating cost $f_i \ge 0$ of each facility: this is the cost of opening facility i (a facility has to be opened if it is assigned at least one customer).

The cost of serving a single-unit of demand of customer j from facility i is proportional to the distance between the correspoinding points:

 $c_{ij} \propto dist\left(F_i, C_j\right) := \left\|F_i - C_j\right\|$

We assume that the distance can be defined by Manhattan, Euclidean or Infinity-norm.

Fig. 1: Problem illustration.

NET-CONSTRAINED FACILITY LOCATION PROBLEM Mindaugas Kepalas¹, Julius Žilinskas¹

¹Institute of Data Science and Digital Technologies, Vilnius University

Net-Constraint Formulation

How can we mathematically represent the constraint that a point P belongs to a 2-dimensional net \mathcal{N} ?

We suppose the net \mathcal{N} consists of K line segments E_1, E_2, \ldots, E_K , $\mathcal{N} = \bigcup_{k=1}^K E_k$. Each segment E_k has its starting point P_k and its ending point Q_k and can be represented parametrically as

$$E_{k} = \{ (1 - \alpha_{k})P_{k} + \alpha_{k}Q_{k}, \ \alpha_{k} \in [0, 1] \}$$

Thus, any point $P \in E_k$ satisfies $P = P_k + \alpha_k (Q_k - P_k)$ for a certain $0 \le \alpha_k \le 1$.

Now, lets introduce a binary variable $e_k \in \{0,1\}$ and lets consider the set

$$e_k P_k + \alpha_k (Q_k - P_k), \ 0 \le \alpha_k \le e_k$$

When $e_k = 1$, $\{e_k P_k + \alpha_k (Q_k - P_k), 0 \le \alpha_k \le e_k\} = E_k$. When $e_k = 0$, $\{e_k P_k + \alpha_k (Q_k - P_k), 0 \le \alpha_k \le e_k\} = \{0\}$.

Thus, we introduce K binary variables $e_k \in \{0,1\}, k =$ $1, \ldots, K$, which indicate to which segment point P belongs: $e_k = 1$, if the point P belongs to segment E_k and equals 0 otherwise. We assume that a point can only belong to a single segment: this is achieved by adding the constraint $\sum_{k=1}^{K} e_k = 1$. (When P is the intersection point of two or more segments, the segment is chosen arbitrary.)

To conclude, we can see that the net-point-set $\mathcal{N} = \bigcup_{k=1}^{K} E_k$ is equal to the set

$$S = \left\{ \sum_{k=1}^{K} e_k P_k + \sum_{k=1}^{K} \alpha_k (Q_k - P_k) \right\},\,$$

here we require that $\forall k, e_k \in \{0, 1\}, 0 \leq \alpha_k \leq e_k$ and $\sum_{k=1}^{K} e_k = 1.$

Other Constraints and Variables

We assume that each customer can be served by only a single facility. Thus, for each pair (i, j), i = 1, ..., M, j = 1, ..., M $1, \ldots, N$, we introduce a binary variable $z_{ij} \in \{0, 1\}$ which equals 1 when facility i supplies customer j and 0 otherwise. The constraint that customer *j* is served by single facility is then simple to formulate: we require that

$$\sum_{i=1}^{M} z_{ij} = 1, \ j = 1, 2, \dots, N$$

We also define a binary variable $o_i \in \{0, 1\}, i = 1, \dots, M$. $o_i = 1$ if facility i is opened and $o_i = 0$ otherwise.

Mixed-Integer-Program (MIP)

With previous definitions and notations, we see that the net-constrained facility location problem can be formulated as follows:

find facility positions

subject to

capacity-constraints

single-facility-constraints

where o_i, z_{ij} are binary-variables:

$$o_i, z_{ij} \in \{0, 1\}, i = 1, \dots, M, j = 1, \dots, N$$

It turns out that the above problem can be formulated as

Estimated MIP solver time @ net size = 100

s
$$F_1, F_2, \dots, F_M$$
 which
 $i \end{bmatrix} + \left[\sum_{j=1}^N d_j \left(\sum_{i=1}^M z_{ij} \|F_i - C_j\| \right) \right]$

$$F_1, F_2, \dots, F_M \in \mathcal{N}$$
$$\sum_{j=1}^N d_j z_{ij} \le s_i o_i, \ i = 1, \dots, M$$

 $\sum z_{ij} = 1, \ j = 1, \dots, N$

• mixed-integer-programming problem (MIP) in case the distance is Manhattan or Infinity-norm;

 mixed-integer-quadratically-constrained-problem (MIQCP), in case the distance is Euclidean.

Fig. 2: Time contour-map (time in seconds). $T(M, N, K) \approx \exp^{\{-3.911 + 0.028M + 0.196N + 0.015K + 0.037(M \cdot N) + (0.0012)(M \cdot K)\}}$ $\approx 0.020 \cdot (1.029)^M \cdot (1.216)^N \cdot (1.015)^K \cdot (1.037)^{M \cdot N} \cdot (1.0012)^{M \cdot K}$

 R^2 -statistic for the model $\ln(T) = \varphi(M, N, K)$: 0.693

MIP Problem Dimensions

Lets analyze the complexity of our MIP problem (in what follows, M is the number of facilities, N is the number of customers and K is the number of segments in network \mathcal{N}).

- To define each constraint $F_i \in \mathcal{N}, i = 1, \ldots, M$, we need to define *net-variables*:
 - K binary variables for $\{e_k, k = 1, \dots, K\}$,
 - K continuous variables for $\{\alpha_k, k = 1, \dots, K\}$,
 - 2 variables for x, y-coordinates of facility F_i .

net-constraints:

- K inequality-constraints $\alpha_k \leq e_k$,
- 2 equality-constraints for x, y-coords of facility F_i ,
- 1 equality-constraint $\sum_{k=1}^{K} e_k = 1$.

In total:

Variables: $M \cdot K$ binary, $(M + 2) \cdot K$ continuous; **Constraints**: $M \cdot K$ inequality, $M \cdot 3$ equality.

• For each customer C_j , $j = 1, \ldots, N$, we need M binary variables $z_{ij}, i = 1, ..., M$. Each customer has a single-facility constraint $\sum_{i=1}^{M} z_{ij} = 1$. In total: **Variables**: $N \cdot M$ binary;

Constraints: *N* equality.

• For each facility i, customer j pair (i, j) we define a variable $r_{ij} := ||F_i - C_j||$. For infinity-norm distance (and similarly for Manhattan), we need 4 equations:

$$F_{i}.x - r_{ij} \le C_{j}.x, \qquad F_{i}.x$$
$$F_{i}.y - r_{ij} \le C_{j}.y, \qquad F_{i}.y$$

In total:

Variables: $N \cdot M$ continuous; **Constraints**: $4 \cdot N \cdot M$ inequality.

MIP Problem Solving Time

MIP problem is NP-hard, thus we assume that time to solve the net-constrained facility location is determined by the law $T(M, N, K) = \exp^{\varphi(M, N, K)}$

Due to the number of variables and constraints discussed in previous block, we take

$$\varphi(M, N, K) = \alpha_0 + \alpha_M M + \alpha_M + \beta_N^M (M \cdot N)$$

Coefficients $\alpha_0, \alpha_M, \alpha_N, \alpha_K, \beta_N^M, \beta_K^M$ are estimated from a numerical experiment and results are presented in Fig. 2.

Institute of Data Science and Digital Technologies

 $+r_{ij} \ge C_j.x$ (2a) $+r_{ij} \ge C_j.y$ (2b)

 $\alpha_N N + \alpha_K K + 1$ $N) + \beta_K^M (M \cdot K)$