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The Problem

We want to placeM cluster-centers on a net (represented
by little-squares) in a way so that the sum of distances
between cluster-members (represented by little-circles)
and their corresponding centers is minimal (see Fig. 1 for
an illustration).

More detailed explanation:
Suppose you have a network of roads N on the map
and a set of customers C = {C1, C2, . . . , CN} with de-
mands d1, d2, . . . , dN ; the customers are located at points
C1, C2, . . . , CN in 2-dimensional plane (little-circles in Fig. 1).

To serve the customers, you are allowed to open M fa-
cilities F = {F1, F2, . . . , FM} (little-squares in Fig. 1), each
with available max-supply s1, s2, . . . , sM . The places where
you can open the facilities are restrited by the networkN : the
2-dimensional point Fi, representing facility i, must satisfy
Fi ∈ N (see in Fig. 1 that each little-square is on a segment).

We are also given the operating cost fi ≥ 0 of each fa-
cility: this is the cost of opening facility i (a facility has to be
opened if it is assigned at least one customer).

The cost of serving a single-unit of demand of customer
j from facility i is proportional to the distance between the
correspoinding points:

cij ∝ dist
(
Fi, Cj

)
:=
∥∥Fi − Cj∥∥

We assume that the distance can be defined by Manhattan,
Euclidean or Infinity-norm.

Fig. 1: Problem illustration.

Net-Constraint Formulation

How can we mathematically represent the constraint
that a point P belongs to a 2-dimensional net N?

We suppose the net N consists of K line segments
E1, E2, . . . , EK , N = ∪Kk=1Ek. Each segment Ek has
its starting point Pk and its ending point Qk and can be
represented parametrically as

Ek = {(1− αk)Pk + αkQk, αk ∈ [0, 1]}

Thus, any point P ∈ Ek satisfies P = Pk + αk(Qk − Pk) for
a certain 0 ≤ αk ≤ 1.

Now, lets introduce a binary variable ek ∈ {0, 1} and
lets consider the set

ekPk + αk(Qk − Pk), 0 ≤ αk ≤ ek

When ek = 1, {ekPk + αk(Qk − Pk), 0 ≤ αk ≤ ek} = Ek.
When ek = 0, {ekPk + αk(Qk − Pk), 0 ≤ αk ≤ ek} = {0}.

Thus, we introduce K binary variables ek ∈ {0, 1}, k =
1, . . . , K, which indicate to which segment point P belongs:
ek = 1, if the point P belongs to segment Ek and equals
0 otherwise. We assume that a point can only belong to a
single segment: this is achieved by adding the constraint∑K
k=1 ek = 1. (When P is the intersection point of two or

more segments, the segment is chosen arbitrary.)

To conclude, we can see that the net-point-set N = ∪Kk=1Ek
is equal to the set

S =


K∑
k=1

ekPk +
K∑
k=1

αk(Qk − Pk)

 ,

here we require that ∀k, ek ∈ {0, 1}, 0 ≤ αk ≤ ek and∑K
k=1 ek = 1.

Other Constraints and Variables

We assume that each customer can be served by only a
single facility. Thus, for each pair (i, j), i = 1, . . . ,M, j =
1, . . . , N , we introduce a binary variable zij ∈ {0, 1} which
equals 1 when facility i supplies customer j and 0 otherwise.
The constraint that customer j is served by single facility is
then simple to formulate: we require that

M∑
i=1

zij = 1, j = 1, 2, . . . , N

We also define a binary variable oi ∈ {0, 1}, i = 1, . . . ,M .
oi = 1 if facility i is opened and oi = 0 otherwise.

Mixed-Integer-Program (MIP)

With previous defintions and notations, we see that the
net-constrained facility location problem can be formulated
as follows:

find facility positions F1, F2, . . . , FM which

minimize

 M∑
i=1

fioi

 +

 N∑
j=1

dj

 M∑
i=1

zij
∥∥Fi − Cj∥∥


subject to

net-constraints F1, F2, . . . , FM ∈ N

capacity-constraints
N∑
j=1

djzij ≤ sioi, i = 1, . . . ,M

single-facility-constraints
M∑
i=1

zij = 1, j = 1, . . . , N

where oi, zij are binary-variables:

oi, zij ∈ {0, 1}, i = 1, . . . ,M, j = 1, . . . , N

It turns out that the above problem can be formulated as

• mixed-integer-programming problem (MIP) in case the
distance is Manhattan or Infinity-norm;

• mixed-integer-quadratically-constrained-problem
(MIQCP), in case the distance is Euclidean.

Estimated MIP solver time @ net_size = 100
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Fig. 2: Time contour-map (time in seconds).

T (M,N,K) ≈ exp{−3.911+0.028M+0.196N+0.015K+0.037(M ·N)+(0.0012)(M ·K)}

≈ 0.020 · (1.029)M · (1.216)N · (1.015)K · (1.037)M ·N · (1.0012)M ·K

R2-statistic for the model ln(T ) = ϕ(M,N,K): 0.693

MIP Problem Dimensions

Lets analyze the complexity of our MIP problem (in what fol-
lows, M is the number of facilities, N is the number of cus-
tomers and K is the number of segments in network N ).

• To define each constraint Fi ∈ N , i = 1, . . . ,M , we
need to define net-variables:

– K binary variables for {ek, k = 1, . . . , K},
– K continuous variables for {αk, k = 1, . . . , K},
– 2 variables for x, y-coordinates of facility Fi.

net-constraints:

– K inequality-constraints αk ≤ ek,

– 2 equality-constraints for x, y-coords of facility Fi,

– 1 equality-constraint
∑K
k=1 ek = 1.

In total:
Variables: M ·K binary, (M + 2) ·K continuous;
Constraints: M ·K inequality, M · 3 equality.

• For each customer Cj, j = 1, . . . , N , we need M bi-
nary variables zij, i = 1, . . . ,M . Each customer has a
single-facility constraint

∑M
i=1 zij = 1.

In total:
Variables: N ·M binary;
Constraints: N equality.

• For each facility i, customer j pair (i, j) we define a vari-
able rij :=

∥∥Fi − Cj∥∥. For infinity-norm distance (and
similarly for Manhattan), we need 4 equations:

Fi.x− rij ≤ Cj.x, Fi.x + rij ≥ Cj.x (2a)
Fi.y − rij ≤ Cj.y, Fi.y + rij ≥ Cj.y (2b)

In total:
Variables: N ·M continuous;
Constraints: 4 ·N ·M inequality.

MIP Problem Solving Time

MIP problem is NP-hard, thus we assume that time to solve
the net-constrained facility location is determined by the law

T (M,N,K) = expϕ(M,N,K)

Due to the number of variables and constraints discussed in
previous block, we take

ϕ (M,N,K) = α0 + αMM + αNN + αKK +

+ βMN (M ·N) + βMK (M ·K)

Coefficients α0, αM , αN , αK, βMN , βMK are estimated from a
numerical experiment and results are presented in Fig. 2.


