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Based on the clustering results, it can be observed that the CBv2 method works the best with generated data with

noise in all datasets (0.5%, 1%, 2%, and 4% noise). Based on the accuracy metric with all of these datasets, accuracy

was higher than 0.995. The interesting point is that a new method based on the inversion formula can cluster the

data even if data do not have outliers; one of the most popular, for example, is the Iris data set. When we compared

the accuracy results in other datasets, it can be mentioned that the CBMIDE method achieved 0.955 accuracies on the

Iris dataset compared with the second-best GMM method with 0.953 accuracy; using the ARI metric for this dataset,

CBMIDE methods as well showed better results compared with other methods. Additionally, it is notable that the

CBMIDE method has a lower standard deviation than other methods used in this research. It is worth mentioning

that this method also has limitations. Based on the experimental study, this one method in the current state can not

work with higher dimensional data (d > 15). This occurs due to T matrix generation; as dimensions grow, finding a

suitable T matrix becomes harder. This one will be solved in future versions of the model; we will present more

about it in future work. The future direction of the newly created method is this method application for deep

clustering. It can be seen that CBMIDEv1 and CBMIDEv2 methods do not work well with higher-dimension data. Due

to that, the deep clustering method with an encoder structure could solve this problem.

Input:  Data set X= [X1,X2, . .  .  ,  Xn], cluster number K
Output: C1, C2, _, Ct and M, p, R
Possible initiation of mean vector:

(1) random uniform initialization
(2) k-means
(3) random point initialization

Generate a T matrix. The set T is calculated when the design directions
are evenly spaced onthe sphere.

For i = 1: t do

Update M, pk, R matrices
Density estimation for each point and cluster based on formula

End

Return C1, C2, _, Ct and M, pk, R

Data Clustering Based on the Modified
Inversion Formula Density Estimation

I N T R O D U C T I O N
Data research is widely used in various fields such as business, production, online trade, consumer services, and

other fields. Due to such a large data mining application, the field is receiving much attention. Data clustering is an

unsupervised type of machine learning that is also widely used in data mining. In data clustering, the main goal is to

divide objects into separate, unknown groups to have as many similar objects as possible in one group. Making such

groups allows you to find hidden relationships between data. Data clustering is applied in bioinformatics, feature

selection, and pattern recognition. Although there are many different methods in data clustering, it is a complex

task. Due to different data structures, different clustering methods work well only under certain conditions, so the

need for these methods remains high. One of the most used data clustering methods is the k-means method, which is

relatively simple but can work effectively in good conditions. Most clustering methods perform poorly in the

presence of outliers in the data, and the previously mentioned k-means method suffers from this drawback, as do

GMM, BGMM, and other methods. Recently, various researchers have been paying much attention to different

density estimation methods, as well as robust modifications of these methods, such as soft-constrained neural

networks and others. Due to such a demand for density estimation, this paper aims to evaluate the accuracy of a new

clustering method based on modified inversion formula density estimation. The results show that this developed

method is competitive compared to the current most popular methods (K-means, GMM, BGMM).

In the formula for calculating the density estimate,

construct the estimate of the characteristic

function as a union of the characteristic functions

of a mixture of Gaussiandistributions and a

uniform distribution with corresponding a priori

probabilities.


