13-th Conference Data Analysis Methods for Software Systems
Druskininkai, December 1 - 3, 2022. http://www.mii.vu.lt/DAMSS

kaunas D A
kt u university of

technology DATA ANALYSIS
METHODS FOR

SOFTWARE
SYSTEMS

1922

COMPUTATIONAL MODELS OF HEAT AND MASS TRANSFER
IN THE TEXTILE STRUCTURES

Ausra Gadeikyte and Rimantas Barauskas

Department of Applied Informatics, Kaunas University of Technology, Studenty Str. 50-407, LT-51368, Kaunas, Lithuania. E-mail: ausra.gadeikyte@Kktu.lt.

INTRODUCTION

The aim of this study is to develop computational models of the heat and mass exchange processes that occur in modern composite textile
structures of three-dimensional internal structure. The proposed finite element models enable the prediction of air permeability and heat transfer
coefficients of textile structures in the early design stage. Furthermore, the finite element models were verified by comparing the sample variants of
the calculated objects with the experimental measurements presented in the scientific literature. These models might be used in the development of
protective clothing, airbags, fireproof seat covers, passive and active cooling systems, and others [1]. In order to facilitate the use of computational
models for numerical analysis in manufacturing departments or test laboratories, the proposed finite element models were extended to the
simulation apps using Comsol Multiphysics Application Builder.

COMPUTATIONAL METHODS

This research is based on our previous work [2-4]. In this study, we present an application of 3D computational models of heat and mass exchange
In the active cooling system. Governing equations consist of a set of Navier—Stokes and energy equations. The boundary conditions that are applied
In the ventilation model are presented in Figure 1. More details in literature [3,4].

Navier-Stokes equations were applied in the free flow
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NUMERICAL RESULTS Figure 1. The heat and mass exchange scheme in the active cooler system

In order to create a user-friendly environment, the developed models were extended using Comsol Multiphysics Application Builder [5]. The model
tree (see Figure 2.) was simplified using the form editor and method editor for detail analysis. According to the literature [6], the most important
properties of thermal comfort are air permeability, thermal resistance (or heat transfer coefficient). The main results that was evaluated are depicted
In Figure 3.
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