
Influence of  Oxygen Consumption Rate Modulation 

on Bacterial Pattern Formation Models

Introduction
Mathematical bacterial pattern formation models have
been studied since the 1970s. Most models are based
on Keller-Segel equations. In this approach, the
dynamics of the bacteria population is modeled using
a system of nonlinear reaction-diffusion-chemotaxis
partial differential equations [1].

Escherichia coli exhibits attraction to self-excreted
chemoattractant. It was also shown that the activity of
E. coli depends on available oxygen [2]. The dynamics
of oxygen consumption rate play an important part in
the pattern formation. Multiple methods of oxygen
consumption rate modulation have been used in
different studies. The interactions between several
active processes lead to very complex dynamic
systems that are still poorly understood.

The model involving chemoattractant and oxygen
dynamics is used to simulate the 2D patterns in
bacterial populations near the inner lateral surface of a
cylindrical micro-container.

Simulation results

Visualization of cell density. a) and b) is cell density at time T=10 and T=320 respectively.

c) Spatiotemporal plot showing dynamics of cell density. 
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The aim of this work
is to examine the effects of different functions modu-
lating the oxygen consumption rate on the spatio-
temporal pattern formation of luminous bacteria.

Conclusions
The developed computational model can be used to investigate the effect of the modulation of the oxygen
consumption rate on the bacterial self-organization in liquid unstirred cultures.

The form of the rate modulation functions is of crucial importance to the bacterial pattern formation.

Different forms of the modulation functions allow to simulate different features of experimentally observed patterns
more adequately.

Governing equations
The dynamics of an E. coli population has been
described by a system of three Keller-Segel type
reaction-diffusion-chemotaxis equations, which in the
dimensionless form read
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� �, �, � − cell density,
� �, �, �  − chemoattractant concentration,
� �, �, �  − oxygen concentration,
��, �� − diffusion coefficients,
χ − chemotactic sensitivity,
α − growth rate of the cell population,
λ − oxygen consumption rate,
�� �, � , �� �, � , �� �, � − rate modulation functions

Experimental data

Experimental data examples: a) bioluminescence as seen 

from the side of a cylinder tube [7], b) spatiotemporal plot 

of bioluminescence near the contact line [2]

Numerical simulation
Because of nonlinearity, the initial value problem was
solved numerically using finite difference technique.

A uniform discrete grid 250×112 was introduced in
space directions and the constant dimensionless step
size 5×10-4 was used in the time direction.

Simulator was programmed in Python programming
language using the NumPy package, and the results
have been visualized using Matplotlib library.

Modeling domain
The spatiotemporal pattern formation was modeled in
the liquid cultures of luminous E. coli near the inner
latter surface of a circular micro-container.

The 2D domain of the dimensionless model is
�, � ∈ 0, � � 0, ℎ ,  � � 4.6 ,  ℎ � 0.45�

The initial values of the model:
� �, �, 0 � 1 � # �, � ,  � �, �, 0 � 0,  � �, �, 0 � �$,

# is a 10% random perturbation, �$ is the oxygen
concentration near the upper contact surface.

The boundary conditions for � and � are no-pene-
tration at the bottom and the top of the domain, for �

are no-penetration at the bottom and fixed at the top
of the domain. The boundary conditions at the sides of
the domain are periodic.
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Rate modulation functions used
A. Oxygen-dependent carrying capacity [3,4]
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B. Saturating cell growth [5]
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C. Cut-off approach [6]

�� �, � � , � � �∗ � �,

�� �, � �
, � � �∗

1 � '�
, 

�� �, � � , � � �∗ .

. – influence of oxygen,

' – saturating chemoattractant production,

( – optimal growth rate of the cell population,

) – saturating cell growth,

, / – Heaviside function,

�∗ – oxygen consumption cut-off value.

Model parameters
0 � 1,  ' � 0.73,  3 � 0.048,  5 � 8.3, 

�� � 0.04, �� � 0.12,  ( � 2.4,  ) � 1.5, 

�$ � 1, �∗ � 0.2


