Bayesian Optimization

- Bayesian optimization (BO) is an effective and popular approach for global optimization of black-box functions [2].
- Using BO we want to find an input \(x \in \mathcal{X} \) that maximizes the true-valued black-box function \(f : \mathcal{X} \to \mathbb{R} \) defined on a compact domain \(\mathcal{X} \subseteq \mathbb{R}^D \).
- The factorization of the log-marginal likelihood degenerates the full covariance matrix
- The Generalized Product of Expert (gPoE) model combines each individual GP expert prediction into a final aggregate model

\[f(k_{x, x}) = \text{argmax}_{k} f(x) \]

given noisy observations \(y = N(f(x), \sigma_f^2) \) with noise variance \(\sigma_f^2 \).
- Build probabilistic surrogate model based on observations \(D_n = \{(x_i, y_i)\}_{i=1}^{n} \).
- Find the next candidate point \(x_{n+1} \) which maximizes the acquisition function \(\phi, X \to \mathbb{R} \)

\[x_{n+1} = \text{argmax}_x \phi(x) \in \{(x_i)\}_{i=1}^{n} \]

Probabilistic Surrogate Models

Gaussian process

- A Gaussian process \(GP(\mu, \sigma^2) \) is fully specified by a mean function \(\mu(x) \) and a covariance function \(k(x, .) \) [3].
- The objective is to infer the latent function \(f \) from a training set \((x_i, y_i) \) where \(X = \{x_i\}_{i=1}^{m}, y = \{y_i\}_{i=1}^{m} \).
- GP posterior predictive distribution at a test point \(\mu, y \sim N(\mu(x), \sigma_f^2) \) is Gaussian with the mean and variance given by

\[\mu_f = k_{x, x}^T k_x^{-1} y, \quad \sigma_f^2 = k_{x, x} - k_{x, x} k_x^{-1} k_{x, x}^T \]

The main challenge of GP is that training requires the inversion and the determinant of \(K_n = \sigma_f^2 I \), which is frequently realised via the Cholesky decomposition with computational cost of \(O(n^3) \). For this reason, training GP on large datasets is computationally intractable.

Generalized Product Of Experts

- Partitions the data into \(M \) subsets \(D_i = \{(x_i, y_i)\}_{i=1}^{n_i} \), where \(1 \leq i \leq M \), and train GP on \(D_i \) as an expert GP model [1].
- Predictive distribution of GP expert \(i \) conditioned on the related subset of the data \(D_i \) and test input \(x \), \(X^D_i \) is Gaussian \(\mu_f(x_i, \sigma_f^2(x_i)) \) with mean and covariance

\[\mu_f(x) = k_{x, x} k_x^{-1} y, \quad \sigma_f^2(x) = k_{x, x} - k_{x, x} k_x^{-1} k_{x, x}^T \]

- The Generalized Product Of Expert (gPoE) model combines each individual GP expert prediction into the final aggregate model

\[\mu_f(x, D) = \sum_{i=1}^{M} p(D_i)(x) \mu_f(x, D_i), \]

which is again Gaussian \(\mu_f(\mu_f, \sigma_f^2) \) with mean and covariance given by

\[\mu_f^2(x) = \sum_{i=1}^{M} p(D_i)(x) \mu_f^2(x, D_i), \quad \sigma_f^2(x) = \sum_{i=1}^{M} p(D_i)(x) \sigma_f^2(x, D_i) \]

The weight \(p(D_i)(x) \) is a measure of reliability and controls the contribution of each expert \(f_i \) at test point \(x \), where \(\sum_{i=1}^{M} p(D_i)(x) = 1 \).
- The factorization of the log-marginal likelihood degenerates the full covariance matrix \(K_n = k(X, X) \) into block-diagonal matrix:

\[K_n = \text{diag}(K_{11}, . . . , K_{MM}) \]

Trust region Bayesian optimization with Generalized PoE

Algorithm 1: Generalized PoE based trust region Bayesian optimization (gPoETRBO)

Input: Number of initializing points \(N \), iterations \(T \), points per expert \(\alpha \), initial TR parameters.
Output: The best recommendation \(x^* \in \mathcal{X} \)

1. Randomly select and evaluate \(N \) points in the search space \(D_n = \{(x_i, f(x_i))\}_{i=1}^{n} \).
2. for \(i = 1 \) to \(T \) do
 3. Randomly partition \(D_n \) into \(M \) subsets.
 4. Train \(M \) local GP experts on \((D_i) \) subsets.
 5. Construct TR of length \(d \) around the best point \(x^* = \text{argmax}_{x \in D} f(x) \).
 6. Generate \(\alpha \) candidate points \(X = \{x_i\}_{i=1}^{\alpha} \) from TR(\(x^* \)).
 7. Evaluate \(\alpha \) local GP expert posterior mean \(\mu_f(x) \) and variance \(\sigma_f^2(x) \) on \(X \) points.
 8. Aggregate \(\alpha \) and \(\sigma_f^2 \) using (6) and (7).
 9. Maximize UCB acquisition function \(\tilde{\phi}(x) = \text{argmax}_{x \in X} \mu_f(x) + \sqrt{2 \sigma_f^2(x)} \)
 10. Evaluate the objective function \(g = f(x) \).
 11. Add a new data point to the dataset \(D_{n+1} = D_n \cup \{x, g\} \).
 12. Update the TR parameters and check whether to restart.

Numerical experiments

Ablation study

References