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Suppose that in a (planar) network A/ we want to choose N
point locations Py, P, ..., Py € N. (See Fig. 1)

/

Fig. 1: Choosing 5 points (red) in a network A (black).

With these locations of the points, there is some associated
cost (objective function) F'(Py, P», ..., Py).

The purpose of the research is to develop efficient al-
gorithms which would find optimal point locations in
a network, e.g., so that the objective function (cost)
F(P, Py, ..., Py) is minimized.

Problem Instance in Engineering

Problem formulation as in the previous section was inspired
by the following problem from structural engineering [1]: sup-
pose we are given a building foundation contour as in Fig. 2.

P Py
—o ®
Pse
Pré
¢ Pio
P5 P4
P ®
®
Py ﬁ9

Fig. 2: Supporting a building with poles at positions Py, P, ..., Pj.

On this contour, we choose N positions P, P», ..., Py of
identical poles. Depending on this placement, each pole gets
aload F; := F;(P,...,Py), ¢ = 1,...,N. The goal is to
distribute the poles in such a way so that the load on each of
them is as similar as possible, e.g., we want F} =~ [H) =~ - .- =
F'5r. We assume that we know the total (constant) weight W/
of the building; therefore the goal is F; ~ %+, i = 1,...,N.
As an optimization problem, this could formulated as follows:
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Related Geometrical Problem

For algorithm testing and analyzing purposes we present the
following geometrical problem. Suppose, in the USA, we
have a network of roads as in Fig. 3:

Fig. 3: Network in the USA. State color indicates how densely the state is inhabited.

In this road network, we want to open N facilities. De-
pending on facility positions, each of them gets a load
F;(Py, Py, ..., Py) of customers: see an example in Fig. 4.
In the figure, you can see for example the smallest dot in the
orange region and the largest dot in the pink region. This
can be explained by looking at Fig. 3: the states contained
In the orange region are sparsely inhabited, while the pink
region completely contains Florida and some other densely
populated states.

Fig. 4: Loads for facilities, opened at the positions of dots. Loads are proportional to

dot sizes.

There is a bunch of computational geometry algorithms
which are needed to output Fig. 4. One of them is the
Voronoi diagram algorithm: for each facility, its region is actu-
ally an intersection of its Voronoi cell and USA map. Thanks
to [R] sf package [2], we did not need to implement those
algorithms ourselves.

First Optimization Algorithm

input :
— loss function F' (depends on point locations),
— network N,
— initial point locations P := {P,,..., Py} C N,
— initial search window radius r > 0,
— shrinkage parameter 0 < a < 1,
— number of iterations [

output: best found point locations P* := { P}, ..., Py}

1 P* .= P.copy();
2 for::=1to 7 do

3 rio=o-r; /* shrink window radius */

4 for j .=1to N do

5 /* 1st step: define a square with lower-left
corner at (P.xz —r, P’y —r) and upper-right
corner at (Pf.o+r, Ply+r) */

6 Sj = GetSquare(P;,);

7 /* 2nd step: find the edges (or their parts)
of network A which belong to the square S;
*/

8 Z; := IntersectNetwork(N,S;);

g /* 3rd step: sample a point on edges in Z; */

10 P; := GetSamplePoint(Z;);

11 end

12 ’PZ:{Pl,PQ,...?PN};

13 | if F'(P) < F'(P*) then // if better locations found

14 P* .= P.copy();

15 | end

16 end

Algorithm 1: Shrinking window random search.

You can see our very first algorithm to optimize network lo-
cations above, and an illustration of it in Fig. 5.
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Fig. 5: Algorithm illustration. At every iteration, a sample of locations is drawn from
within red squares around the best solution found so far. The squares are shrinking

with every iteration.
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Further Research

Finding optimal locations in a network is not an easy opti-
mization problem. E.g., an usual network A/ is non-convex
set, whereas most of classical optimization tools (like al-
gorithms for Linear Programming, Quadratic Programming
problems) work on convex constraint and objective func-
tions [4]. Of course, one can use methods for non-convex
optimization, e.g., Simulated Annealing or Genetic Evolution
[1, 3]. However, locally, convex optimization is possible: if
we restrict the points to belong to particular segments in N/,
the (restricted) constraints become linear. If the objective
IS convex, then we obtain a rich set of efficient methods to
solve the restricted optimization problem (at least locally).
This is the nearest aim of the research: to implement local
optimization in network location problem.

The next direction is to do a research on methods and
tools available for mixed-integer optimization problems.
Though the network is not a convex set, it is possible to
represent the constraint P € A via linear constraints
in higher-dimensional space, if we restrict some asso-
ciated variables to be binary (e.qg., either 0 or 1). Then, if
the objective function is linear or quadratic, tools for solving
mixed-integer-programs (MIP) or mixed-integer-quadratic-
programs (MIQP) could be used to solve network location
problem optimally. Even if the function is not quadratic, it
could be approximated locally by a quadratic model, and
this approximation can be solved optimally.
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