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Abstract

Global optimization problems arise in practice whenever there is a need to
select a collection of variables corresponding to the best value of some objective
function, e. g. the lowest price. In a typical "black-box" situation, when an
analytic expression of the function is unavailable, algorithms based on statist-
ical or Lipschitz objective function models can be applied. Statistical models
are especially useful when function evaluations are expensive, therefore the
efficiency of the algorithms has to be increased in terms of the number of tri-
als. To this end, two approaches combining the statistical global search with
local search techniques were suggested and their efficiency solving difficult
multimodal problems was experimentally demonstrated. The optimization
efficiency is influenced by the selected statistical model as well. Model selection
problem was investigated experimentally and respective guidelines were for-
mulated based on a priori information about the objective function complexity.
In order to ensure not only efficient, but also theoretically justified search for
optimal solutions, theoretical investigation of two algorithms was performed.
First, asymptotic properties of a simplicial statistical model were investigated,
allowing to relate a heuristic simplex selection criterion to the probability of
improvement. Second, an optimal algorithm was derived, justifying the use of a
certain trisection procedure in a set of Lipschitz optimization algorithms.
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Santrauka

Globaliosios optimizacijos uždaviniai iškyla praktikoje atsiradus poreikiui surasti
kintamųjų kombinaciją, atitinkančią geriausią tam tikros tikslo funkcijos reikšmę,
pvz. mažiausią kainą. Dažnoje "juodosios dėžės" situacijoje, kai funkcija gali
būti apskaičiuojama apibrėžimo srityje, tačiau jos analitinė išraiška nežinoma,
sėkmingai taikomi algoritmai, pagrįsti statistiniais ar Lipšico tikslo funkcijos
modeliais. Statistiniai modeliai taikytini, kai funkcijos įvertinimai brangūs,
dėl to svarbu didinti algoritmų efektyvumą, mažinant globaliojo minimumo
paieškai sunaudotą jų skaičių. Tuo tikslu disertacijoje pasiūlyti du statistinės
globaliosios optimizacijos derinimo su lokaliąja paieška būdai bei eksperi-
mentiškai pademonstruotas jų efektyvumas sprendžiant sudėtingus neiškilosios
optimizacijos uždavinius. Optimizacijos algoritmo efektyvumą lemia ir stat-
istinio modelio pasirinkimas. Modelio pasirinkimo uždavinys disertacijoje tirtas
remiantis pasiūlyta eksperimentine metodika, suformuluotos rekomendacijos
atsižvelgiant į numatomą tikslo funkcijos sudėtingumą. Siekiant, kad optimalių
sprendimų paieška būtų ne tik efektyvi, tačiau ir teoriškai pagrįsta, atlikti du
teoriniai algoritmų savybių tyrimai. Pirma, ištyrus simpleksinio statistinio mod-
elio asimptotiką, euristinis simplekso išrinkimo kriterijus susietas su pagerinimo
tikimybe. Antra, išvestas optimalus algoritmas, pagrindžiantis stačiakampių
posričių dalijimą į tris lygias dalis Lipšico optimizacijos algoritmuose.
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Notation
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n the number of already performed objective func-
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yi “ fpxiq, i “ 1, . . . , n the performed objective function evaluations (tri-
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yon “ mini“1,...,n yi the best function value found (the record), used
as an approximation to the global minimum

xon “ arg minxi,i“1,...,n fpxiq the trial point corresponding to the record value

xn1 ă ¨ ¨ ¨ ă xnn the ordered univariate trial points
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Chapter 1

Introduction

1.1 Research Context

A broad range of applications depends on selecting a collection of certain de-
cision variables corresponding to the best value of some quantifiable objective,
e. g. the price of production items [39]. The interest usually lies in finding the
alternative that is the best globally, as contrasted to being optimal only in a
certain subset of the feasible region which is considered unsatisfactory. This
problem is known as the global optimization problem and can be formulated as
follows:

min
xPA

fpxq, (1.1)

where fpxq is the objective function defined over the feasible region A and
depending on the decision vector x P A. The case A “ tx P Rd : ai ď xi ď

bi, i “ 1, . . . , du is addressed in this thesis. Moreover, fpxq that is non-convex
is of special interest. Usually the problem (1.1) is approached by numerical
algorithms, as the analytical solutions are known to exist only in exceptional
cases.

The problem (1.1) is difficult in two respects. First, making the distinction
between the global and local minimum points is complicated from a theoretical
point of view. Second, from the computational viewpoint, the presence of many
other local minima besides the global one greatly complicates its discovery.
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1. Introduction

There are situations when a single objective does not completely define the
choice of the decision vector as several conflicting goals are involved. The
problem statement is generalized to a set of objectives f1pxq, . . . , fkpxq, k ě 2,
x P A:

min
xPA
pf1pxq, . . . , fkpxqq. (1.2)

In general case, due to the conflicting nature of the objectives, there does not
exist a single decision vector x˚, resulting in the best possible values of all
objectives at once. Instead, a solution to (1.2) is represented by a set of optimal
compromises between the objectives. The solutions are required to comply
with the concept of Pareto optimality, which means that for a given solution
no objective could be improved without sacrificing some other objective. The
resulting set of decision vectors is called the Pareto set. In practice, obtaining a
full Pareto set is problematic, since its analytical expression can rarely be derived
and, therefore, a numerical approximation is sought.

There exist various methods for solving the described optimization problems
using both theoretical and heuristic reasoning. Depending on the method, cer-
tain assumptions are made about the problems (1.1) and (1.2). In this thesis, the
attention is confined to the optimization methods which employ statistical and
Lipschitz objective function models. They are applicable in a rather common
engineering situation where the objective function is available as a black-box com-
puter code that produces a value for a given input, but its analytical expression
is unknown.

In case the black-box function involves a time-consuming simulation or a com-
plex experiment, the optimization process must use costly objective evaluations
rationally to ensure a satisfactory result with minimum resources. In this situ-
ation, it is beneficial to exploit a statistical objective function model. After some
function evaluations have already been obtained, the statistical model can be
viewed as a predictor of function values with an associated uncertainty measure
at locations yet unexplored. These characteristics are then used by a global
optimization algorithm to assess the suitability of x P A for becoming the next
trial point, meaning, however, that an expensive auxiliary optimization problem
over A needs to be solved at each step of the algorithm. Two broad research
directions of such an approach have emerged since its introduction by Kushner
[53] in 1962. The first direction covers approximations of the optimal Bayesian

2



1.1. Research Context

algorithm, ensuring the minimal expected error in n steps ahead with respect
to the chosen statistical model. The second direction consists of variations of
the P-algorithm, developed in the axiomatic framework of the rational choice
theory and defined as a sequence of rational choices under uncertainty. The
state-of-the-art developments strive to expand the applicability of the methods
by working around the expensive auxiliary optimization problems in the ori-
ginal form of the algorithms. Statistical models adjusted for the feasible region
decomposition into simplices or hyper-rectangles are promising in this respect
because computations can be simplified and theoretical investigation conducted.

In the black-box situation, only minimal assumptions regarding the objective
function can be made. Among the mildest ones is the key assumption, used
in the Lipschitz global optimization, that the objective function rate of change
is bounded. Objective functions satisfying this assumption are said to comply
with the Lipschitz model. The bounded rate of change assumption is rather real-
istic in real-world applications, moreover, it is attractive in many respects. For
example, it helps to conduct a theoretical investigation, prove convergence prop-
erties of algorithms and define meaningful stopping conditions based on the
proximity of the global minimizer. Furthermore, Lipschitz optimization meth-
ods are usually deterministic requiring no repeated runs. The main problem of
the model is a generally unknown Lipschitz constant, i. e. the rate-of-change
bound. The univariate single-objective Lipschitz optimization is well explored
theoretically, and very good optimization algorithms are known, including the
famous Pijavskij-Shubert algorithm. Straightforward generalizations of the best
ideas to the multivariate case did not prove equally attractive. As a result,
the multivariate case is under investigation, involving variations within the
branch-and-bound framework with both hyper-rectangular and simplicial sub-
sets. Among the most successful algorithms is the DIRECT algorithm, relying
on a hyper-rectangular decomposition of the feasible region and the way of
considering a range of rate-of-change constants simultaneously. Based on these
core ideas, state-of-the-art methods aiming to accelerate the approximation of
the global minimum are developed.

3



1. Introduction

1.2 Relevance of the Study

Various statistical models were proposed in the context of global optimization,
such as Gaussian stochastic functions or decomposition-adjusted statistical
models. The choice of the model should be based on the a priori available
information about the problem at hand, as well as computational complexity
considerations. Therefore a systematic investigation of the impact that different
statistical models have on the optimization results of objectives with various
characteristics, would be useful. Situations when the assumed model precisely
corresponds to the actual objective function, as well as when it does not, are of
special interest.

Optimization methods using statistical objective function models devote consid-
erable effort planning the trial points, that makes them suitable for optimizing
expensive objective functions. The high cost of the objective function evalu-
ations motivates to reduce the number of trials as much as possible to achieve
the global minimum approximation of desired accuracy. A recent algorithm,
rooted in statistical theory of global optimization, and relying on an iteratively
refined hyper-rectangular feasible region decomposition, is a state-of-the-art
method with theoretically established convergence properties. However, when
it comes to practical performance, the discovery of the global minimizer is im-
peded by the presence of other local minimizers. The algorithm places many
trials in their vicinity, wasting resources. As these trials are costly, it is necessary
to find ways of preventing such behaviour.

A simplicial statistical model was used in a recent global optimization algorithm,
where the feasible region decomposition is obtained by means of the Delaunay
triangulation. The algorithm arises interest as the authors provide its conver-
gence rate. The algorithm operates by selecting a simplex to be partitioned at
each iteration, based on a relatively simple heuristic criterion. The intuition
behind the criterion suggests that it should relate to the probability of finding a
better function value inside the considered simplex. Formalizing this conjecture
would provide a theoretical justification for the heuristic criterion in question.

Recently single-objective Lipschitz optimization algorithms based on adaptive
diagonal partitions proved successful for both univariate and multivariate prob-

4



1.3. Objectives and Tasks of the Thesis

lems. These methods apply a trisection procedure to divide hyper-rectangles.
Moreover, the same trisection procedure was used in the bivariate bi-objective
Lipschitz optimization. A theoretically interesting task is to demonstrate the
optimality of the trisection procedure in question, starting from a relatively
simple case of the univariate bi-objective Lipschitz optimization. Although, in
general, the applicability of optimal algorithms is narrow, they can be used as
benchmarks for comparison; moreover, some of their properties might be shared
by other practically applicable algorithms.

1.3 Objectives and Tasks of the Thesis

The present thesis aims at efficient and theoretically justified search for optimal
solutions. Analysis of theoretical properties, as well as heuristic extensions in
the single-objective global optimization using statistical models are provided.
Furthermore, the worst-case optimality in the univariate bi-objective Lipschitz
optimization is investigated.

The objectives of the study are:

1. Investigate the effect of the assumed statistical model on the performance
of global optimization algorithms.

2. Increase the global minimum approximation efficiency in terms of the
number of function evaluations of a recent global optimization algorithm,
relying on a hyper-rectangular decomposition-adjusted statistical objective
function model.

3. Theoretically support the definition of a simplicial global optimization
algorithm, using properties of a simplicial statistical model.

4. Investigate the worst-case optimality in univariate bi-objective Lipschitz
optimization.

The following tasks were identified:

5



1. Introduction

1. Propose an experimental methodology and develop guidelines for the
selection of a statistical model to be used for constructing classical global
optimization algorithms.

2. Suggest ways to hybridize the recent global search strategy with local
search techniques, allowing to increase the efficiency of approximating the
global minimum in terms of the number of function evaluations.

3. Investigate asymptotic properties of a simplicial statistical model and use
them to establish a theoretical link between the improvement probability-
related criterion and a heuristically defined, but efficiently computable
simplex selection criterion in the simplicial global optimization.

4. Investigate the one-step worst-case optimal trisection of an interval in the
univariate bi-objective Lipschitz optimization and implement a corres-
ponding optimal algorithm.

1.4 Scientific Novelty and Results

An experimental methodology was proposed aimed at a systematic assessment
of the impact that the selected statistical model of the objective function has on
the optimization of objective functions with various characteristics. Guidelines
for the model selection were formulated based on the experimental results with
a number of 1- and 2-dimensional Gaussian stochastic functions considered as
statistical models used to construct optimization algorithms as well as generate
objective functions.

Two heuristic extensions for a recent global search algorithm, iteratively refining
a hyper-rectangular decomposition of the feasible region based on a statistical
objective function model, were proposed, as an attempt to obtain an approx-
imation of the global minimum in a moderate number of function evaluations.
The suggested modifications combine global and local search techniques. The
experimental comparison demonstrates that the resulting modifications perform
better than the original and other contemporary algorithms under consideration.

6



1.5. Statements to Be Defended

Theoretical support for using a heuristically defined simplex selection criterion
in a recent simplicial global optimization algorithm was provided. This was
achieved by establishing a link between the criterion in question and the probab-
ility of improvement-related criterion. The latter corresponds to the case when a
stationary isotropic Gaussian random field, defined over a simplex with known
objective function values at the vertices, is used as a statistical model of the
objective function.

The one-step worst-case optimal trisection of an interval in the univariate bi-
objective Lipschitz optimization was investigated with respect to the tolerance
of the local lower Lipschitz bound. It was theoretically shown that trisection of
an interval into three equal parts satisfies the considered definition of optimality.
A corresponding optimal bi-objective optimization algorithm was implemented
and its performance was demonstrated.

1.5 Statements to Be Defended

1. The P-algorithm, constructed assuming a stationary isotropic Gaussian
stochastic function with an exponential correlation, performs the best for a
variety of univariate and bivariate objective functions.

2. The Maximum expected improvement algorithm, constructed assuming a sta-
tionary isotropic Gaussian stochastic function with a correlation structure
ensuring low short-range variability, is appropriate to use for optimizing
relatively simple objective functions.

3. Balancing the local and global search strategies in proposed hybrid al-
gorithms GB and Cluster consumes fewer function evaluations compared
to the original global optimization algorithm Rect-1 that they extend, when
difficult multi-modal global optimization problems are optimized.

4. A heuristically defined simplex selection criterion is asymptotically equi-
valent to a probability of improvement-related expression.

5. The trisection of an interval into three equal parts in the univariate bi-
objective Lipschitz optimization is one-step worst-case optimal.

7



1. Introduction

1.6 Structure of the Thesis

The thesis includes 6 chapters, general conclusions and 3 appendixes, covering
conditional characteristics of the Gaussian stochastic functions, parameter estim-
ation statistics for an experimental investigation in Chapter 3 and the proofs of
the lemmas and the theorem of Chapter 6. Additionally, the bibliography and a
list of publications by the author of this thesis are included. This thesis contains
159 pages with 19 figures, 23 tables and 4 algorithms.
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Chapter 2

Global Optimization Based on
Statistical and Lipschitz Objective
Function Models

In this chapter we present a survey of the developments in two broad research
directions in the global optimization of continuous problems, namely methods
involving statistical and Lipschitz models of the objective functions.

Both types of models are applicable in a situation where the objective function
is given as a black-box computer code that provides no information other than
output values for given input vectors, and only minimal assumptions regarding
it are possible.

2.1 The Global Optimization Problem

The formal statement of the unconstrained global optimization problem is

min
xPA

fpxq, (2.1)

where fpxq is the objective function and A is a hyper-rectangular feasible region,
i. e. A “ tx P Rd : ai ď xi ď bi, i “ 1, . . . , du. Alternatively, A can be called the
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2. Global Optimization Based on Statistical and Lipschitz Objective Function Models

search space or the domain. The objective function fpxq is said to be black-box if
it is possible to evaluate it on the points of the domain, however, its analytical
expression is unavailable.

The notation for the global minimum f˚ “ minxPA fpxq and the set of global
minimizers X˚ “ tx˚ : fpx˚q “ f˚u is used in the discussion that follows.

A global minimization algorithm is a procedure of generating a sequence of loca-
tions xi, i “ 1, . . . , n, such that an approximation of the global minimum f˚

yon “ min
i“1,...,n

fpxiq (2.2)

tends to f˚, as n tends to infinity. The value yon is sometimes called the record.
In addition, an approximation of some global minimizer x˚ P X˚ is produced by
the algorithm as well.

The points pxi, yiq, yi “ fpxiq, i “ 1, . . . , n, are called the objective function evalu-
ations or trials.

The locations xi, i “ 1, . . . , n, are referred to as objective function evaluation points
(locations) or trial points. In the univariate case, it is sometimes useful to consider
the ordered trial points xni , i “ 1, . . . , n, satisfying xnj ă xnk , if j ă k.

According to the way that the trial points xi, i “ 1, . . . , n, are obtained, the
algorithms are classified as either passive (non-adaptive) or sequential (adaptive).
In the first case, the points xi P A, i “ 1, . . . , n, are fixed a priori, before the
optimization process starts. In the second case, the selection of each new location
xn`1 is governed by a certain function of the already obtained results, i. e.
pxi, yiq, i “ 1, . . . , n.

2.2 Global Optimization Based on Statistical Mod-

els

The case when a black-box function fpxq is expensive or time-consuming to eval-
uate, calls for a need to carefully plan objective function evaluations. Examples
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2.2. Global Optimization Based on Statistical Models

of such problems include the search for the best design options in engineering,
as well as optimization of non-linear control systems, involving time-consuming
simulations.

The global optimization approach discussed in the present section employs
a statistical model ξpxq, x P A, of the objective function fpxq, x P A, in the
described situation. The statistical model can be viewed as an approximation of
the objective function, built using the already performed function evaluations
pxi, yiq, yi “ ξpxiq “ fpxiq, i “ 1, . . . , n. The model provides a conditional
predictor of the function values mpx|ξpxiq “ yi, i “ 1, . . . , nq at locations x P
A, x ‰ xi, i “ 1, . . . , n, yet unexplored, as well as a measure of uncertainty
s2px|ξpxiq “ yi, i “ 1, . . . , nq in the result of the prediction. Depending on the
specific statistical model used, the computation of these characteristics has a
different level of complexity. The most common statistical models are introduced
in Section 2.2.1.

In essence, the global optimization algorithms relying on a statistical objective
function model assess the suitability of x P A to become the next trial point, based
on a certain criterion, involving the respective predictor and uncertainty values
at x. Originally, the idea of using a statistical objective function model in global
optimization appeared in [53]. The development of the respective algorithms
evolved in two main directions. The first direction includes approximations
of the optimal Bayesian algorithm, defined in [66] and ensuring the minimal
expected error in n steps ahead with respect to the chosen statistical model. The
second direction consists of further developments of the so-called P-algorithm,
axiomatically defined in the framework of rational choice theory [95]. These
algorithms are described in Section 2.2.2.

The term surrogate model of the objective function is used by some authors
[24, 47] to refer generally to possible predictors of the function values, including
statistical models as a subcategory, alongside polynomial interpolators, regres-
sion models, etc. The use of a statistical model of a specific structure [75] in
optimization is referred to as kriging by the same authors, however, it should be
regarded a special case of the more general approach considered in this thesis.

For the information on the earliest developments in the field the reader is
referred to the monographs [67, 89, 93, 96, 105], whereas more recent develop-
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2. Global Optimization Based on Statistical and Lipschitz Objective Function Models

ments are covered in [85, 103, 109].

2.2.1 Common Statistical Models

The present section aims to introduce a variety of statistical models used in the
literature to model the objective functions. The choice of the specific statistical
model is usually based on the previous practice, subjective assessment of its
adequacy to the problem and computational complexity considerations.

The basics of the stochastic functions, which were the first statistical models
used in global optimization, are recalled. The most notable representatives of
this class of models are the stationary isotropic Gaussian random fields and the
Wiener process, considered in Chapter 3.

Further, a generalized statistical model, originally developed in [108], is de-
scribed, which allows to model the objective function as a more general family
of random variables than that embodied by a stochastic function. This general-
ization allowed to overcome the computational restrictions emanating from the
use of stochastic functions as models in the multi-dimensional case.

Finally, decomposition-adjusted statistical models, defined in the context of
global optimization based on simplicial and hyper-rectangular decompositions
of the feasible region and derived from the generalized statistical models, are
described. The algorithms based on the decomposition-adjusted models are the
subject of Chapters 4 and 5 of this thesis.

2.2.1.1 Basics of Stochastic Functions

A model of a function under uncertainty in probability theory is the stochastic
function, making it a natural choice for modelling a black-box objective function
with unknown properties.

Let us start with some basic definitions, provided in [56], complying with the
customary notation in the probabilistic literature.
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2.2. Global Optimization Based on Statistical Models

A stochastic (or random) process is formally defined to be a collection of random
variables defined on a common probability space pΩ,F, P q and indexed by the
elements of a parameter set T . It is customary to perceive t P T as time. If T “ Rd

with d ą 1, the process is referred to as a random field. The random variables of
the process must have the same measurable range space S.

Indeed the process is a function of two variables, say, ξ “ ξpt, ωq, where t P T, ω P
Ω, and where for each fixed t the function ξpt, ¨q is measurable with respect to
F. If instead of t we fix an ω P Ω, we obtain a function ξp¨, ωq : T Ñ S which is
called a realization (or, alternatively, a sample function) of the process. The process
ξ might be thought of as a single random variable taking values in a space of
the functions on T , as emphasized by the term stochastic (random) function.

The latter interpretation is precisely the one used in the context of global op-
timization, expressed as the problem (2.1). Let the parameter set T “ A Ă Rd,
and the indexing variable be denoted by x instead of t. Moreover, let the range
space S “ R. Then the objective function under uncertainty fpxq is modeled as
a realization ξp¨, ωq : AÑ R of the stochastic function ξpx, ωq : Aˆ Ω Ñ R. The
simplified notation ξpxq, x P A, will be used throughout this thesis.

A simplifying assumption that the probabilistic structure of a stochastic function
is invariant under transformations of A “ Rd, such as translation, rotation and
reflection, is expressed through the notions of stationarity and isotropy of the
random field, as defined in [87].

Let the mean and covariance functions of ξpxq be defined, respectively, as

µpxq “ Epξpxqq, (2.3)

Kpx1, x2q “ Eppξpx1q ´ µpx1qqpξpx2q ´ µpx2qqq. (2.4)

If a function K1 : Rd Ñ R exists such that Kpx1, x2q “ K1px1 ´ x2q, @x1, x2 P Rd,
moreover, the random field possesses finite second moments and a constant
mean function µpxq “ µ, it is called weakly stationary.

Further, if a functionK2 : r0,`8q Ñ R exists such thatKpx1, x2q “ K1px1´x2q “

K2p}x1´x2}2q, @x1, x2 P Rd, where }¨}2 denotes the Euclidean norm, and µpxq “ µ,
the random field is called weakly isotropic. A weakly isotropic random field is
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2. Global Optimization Based on Statistical and Lipschitz Objective Function Models

always weakly stationary.

The correlation function ρ : r0,`8q Ñ R of a weakly isotropic random field is
denoted by ρpτq “ ρp}x1 ´ x2}2q “ K2p}x1 ´ x2}2q{K2p0q, K2p0q ą 0, x1, x2 P Rd,
τ P r0,`8q.

A real-valued Gaussian stochastic function is a stochastic function ξpxq, x P Rd for
which the finite-dimensional distributions of pξpx1q, . . . , ξpxnqq are multivariate
Gaussian for each 1 ď n ď `8 and each px1, . . . , xnq P pRdqn.

Every Gaussian stochastic function ξpxq, x P Rd is strictly stationary (isotropic) if
and only if it is weakly stationary (isotropic) [87]. Therefore, the modifier weak
will be omitted referring to the stationary isotropic Gaussian random fields.

The Gaussian stochastic function is determined by the mean and covariance
functions. Given any set A, a function µ : AÑ R, and a non-negative definite
function K : A2 Ñ R, there exists a Gaussian stochastic function ξpxq, x P A with
the mean function µpxq and the covariance function Kpx1, x2q [5]. Alternatively,
one can specify the mean function µpxq (constant µ for stationary isotropic Gaus-
sian processes), standard deviation σ “

a

K2p0q and the correlation function
ρpτq, τ P p0,`8s to define a Gaussian stochastic function.

When some values ξpxiq “ yi, i “ 1, . . . , n of a realization of a Gaussian stochastic
function are known, the conditional distribution of ξpxq, x ‰ xi is also Gaussian
with the conditional mean and variance, respectively, denoted by mpx|ξpxiq “
yi, i “ 1, . . . , nq and s2px|ξpxiq “ yi, i “ 1, . . . , nq.

Consider a stationary isotropic n-dimensional Gaussian random field with mean
µ, standard deviation σ and a correlation function ρpτq, τ ě 0. The conditional
characteristics can be expressed as:

mpx|ξpxiq “ yi, i “ 1, . . . , nq “ µ` ΣTC´1
py´mIq, (2.5)

s2
px|ξpxiq “ yi, i “ 1, . . . , nq “ σ2

p1´ ΣTC´1Σq, (2.6)

where y “ py1, . . . , ynq “ pξpx1q, . . . , ξpxnqq, Σ “ pρp}x´ x1}2, . . . , ρp}x´ xn}2q
T ,

C “ pρp}xi ´ xj}2qqij , i, j “ 1, . . . , n, I “ p1, . . . , 1qTn .
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Figure 2.1: An example of assuming that the objective function is a realization
of the Wiener process. Left: three possible realizations of the Wiener process
passing through the points pxnj , ξpxnj qq, j “ i, i ` 1, i ` 2, corresponding to the
performed objective function evaluations. Right: Graphs of conditional mean
mpx|ξpxiq “ yi, i “ 1, . . . , nq (dashed) and standard deviation spx|ξpxiq “ yi, i “
1, . . . , , i “ 1, . . . , nq (solid) of the Wiener process.

2.2.1.2 The Wiener Process

The first statistical model of the objective function known in the global optimiza-
tion literature was the Wiener process (also known as Brownian-motion process),
as used in the seminal paper by Kushner [53].

The Wiener process is a 1-dimensional Gaussian stochastic function ξpxq, x P

r0,`8q with stationary independent increments such that ξp0q “ 0, ξpxq „
Np0, σ2xq, where σ is a parameter. The stationarity and independence of in-
crements means that for xn1 ă ¨ ¨ ¨ ă xnn, xni P r0,`8q, the random variables
ξpxni`1q ´ ξpxni q, i “ 1, . . . , n ´ 1, n P N, are mutually independent and have a
joint distribution which is unchanged if each xni is replaced by xni ` h, h P R [56].
The covariance of the Wiener process is Kpxni , xnj q “ σ2xni , @i ă j.

Figure 2.1 illustrates an assumption that the objective function is a realization
of the Wiener process. The dots denote three performed objective function
evaluations pxnj , ξpxnj qq, j “ i, i ` 1, i ` 2. An infinite number of the Wiener
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2. Global Optimization Based on Statistical and Lipschitz Objective Function Models

process realizations might pass through these fixed points out of which three
possible sample functions are shown on the left subfigure. The values of ξpxq
over the intervals pxni , xni`1q and pxni`1, x

n
i`2q are unknown and are modeled by

conditional probability distributions with mean and standard deviation func-
tions mpx|ξpxiq “ yi, i “ 1, . . . , nq and spx|ξpxiq “ yi, i “ 1, . . . , , i “ 1, . . . , nq,
respectively. mpx|¨q corresponds to the piece-wise linear dashed graph on the
right subfigure. It passes through the points pxnj , ξpxnj qq, j “ i, i`1, i`2. spx|¨q is
displayed by the solid line on the right subfigure. The uncertainty described by
spx|¨q equals to zero at the known evaluation locations and reaches the maximum
value at the midpoints of the intervals pxni , xni`1q and pxni`1, x

n
i`2q.

The applicability of the Wiener process as a model of a univariate objective
function is disputable due to the fact that the realizations of this process are
continuous everywhere but differentiable nowhere. This contradicts the nature
of objective functions arising in practice.

However, the independence of increments over disjoint intervals is an acceptable
assumption for complicated optimization problems with many local minima
[106]. Moreover, the process is computationally attractive, since it possesses
the Markov property. From the global optimization viewpoint, this results in
the computational simplifications, as for ordered trial points xni , i “ 1, . . . , n,

the conditional characteristics of x P rxnj , xnj`1s, j “ 1, . . . , n ´ 1, depend on
pxnj , ξpx

n
j qq and pxnj`1, ξpx

n
j`1qq only:

mpx|ξpxni q “ yni , i “ 1, . . . , nq “ mpx|ξpxni q “ yni , i “ j, j ` 1q, (2.7)

s2
px|ξpxni q “ yni , i “ 1, . . . , nq “ s2

px|ξpxni q “ yni , i “ j, j ` 1q. (2.8)

Expression (2.7) is piecewise linear, while (2.8) is piecewise quadratic (see Ap-
pendix A).

A further advantage of assuming the Wiener process as an objective function
model is its attractiveness to analytical treatment of resulting global optimization
algorithms [12, 15, 106]. However, there are no global optimization algorithms
relying on generalizations of the Wiener process to higher dimensions.

All things considered, the Wiener process should serve as a global description
of the objective function but not as a local one. For example, a dual model
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using a quadratic local description of the objective function was introduced in
[94]. Moreover, the non-differentiability issue was addressed in [14], where the
integrated Wiener process was employed.

2.2.1.3 A Generalized Statistical Model

The applicability of stochastic functions as models of objective functions is
limited in the multivariate case due to the need to invert a correlation matrix
of dimensionality nˆ n, where n is the number of already performed trials, in
order to compute the characteristics of the conditional distribution of ξpxq, x ‰
xi, i “ 1, . . . , n, in (2.5) and (2.6). This operation is required to determine every
new trial point xn`1 in algorithms discussed in Section 2.2.2.

To address this problem, the validity of using a general family of random vari-
ables ξpxq, x P A, as a model of fpxq was established axiomatically, as described
in [93]. Typically a priori information about fpxq arising from the experience
of solving similar engineering problems in the past does not contradict a set of
comparative probability axioms, i. e. certain assumptions regarding the possible
value intervals of fpxq. The compliance of fpxq with these axioms implies the
existence of a unique probability density of a random variable ξpxq, x P A, mak-
ing it suitable to model fpxq, x ‰ xi, i “ 1, . . . , n. Due to computational as well
as intuitive reasons, ξpxq are defined to be the Gaussian random variables. The
stochastic functions could be considered a special case of the new generalized
model.

Further, the conditional characteristics of the generalized model, mpx|ξpxiq “
yi, i “ 1, . . . , nq and s2px|ξpxiq “ yi, i “ 1, . . . , nq, were defined in [107] based
on the axioms of rationality of extrapolation under uncertainty. mpx|¨q can be
viewed as a predictor of values at unexplored locations, while s2px|¨q is inter-
preted as an extent of deviation from the predicted value. The only extrapolators
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compatible with the axioms are

mpx|ξpxiq “ yi, i “ 1, . . . , nq “
n
ÿ

i“1

wipx, xi, i “ 1, . . . , nq ¨ yi,

s2
px|ξpxiq “ yi, i “ 1, . . . , nq “ γn

n
ÿ

i“1

wipx, xi, i “ 1, . . . , nq}x´ xi}2, (2.9)

where pxi, yiq, i “ 1, . . . , n, are the trials performed, wip¨q are some weights
defined by heuristic reasoning and experimental results, and γn ą 0 might
depend on the trials performed.

For a special case of ξpxq being a stochastic function, expressions (2.9) are equival-
ent to its conditional mean and variance. Otherwise they are easier to compute
as the definition of weights can avoid matrix inversion.

2.2.1.4 Decomposition-Adjusted Statistical Models

Let us recall from [39] that for A Ă Rd and a finite set of indices I , a set D “ tSi :

i P Iu of subsets of A is called a decomposition (or partition) of A if

A “
ď

iPI

Si and Si X Sj “ δSi X δSj, @i, j P I, i ‰ j, (2.10)

where δSi denotes the boundary of Si .

Building upon the generalized statistical models of fpxq, discussed in Sec-
tion 2.2.1.3, an idea to decompose the feasible region A into simplices Si over
which independent statistical models of fpxq are constructed, was presented
in [110], followed by later developments in [16, 113, 114]. Similarly, statist-
ical model versions for the hyper-rectangular decompositions instead of the
simplicial ones were defined in [11, 30].

The approach provided a way to break an auxiliary optimization problem overA,
defining the next trial point xn`1 (see Section 2.2.2), down into subproblems over
subsets of A, that can be solved individually. Consequently, it can be viewed as
elimination of the main computational obstacles to the wider application of the
optimization algorithms based on the statistical models of objective functions.
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In the case of simplicial subsets Si, the model of fpxq as a family of Gaussian ran-
dom variables ξpxq with conditional characteristics mpx|¨q and s2px|¨q is defined
over a simplex. The collection of all such simplices, spanning the entire feasible
region, provides the statistical model of fpxq, x P A. The analogue to the Markov
property of the Wiener process and the linearity with respect to x is ensured,
when the mean of ξpxq is defined as

mpx|ξpxiq “ yi, i “ 1, . . . , nq “
d`1
ÿ

i“1

νipx,ωj, j “ 1, . . . , d` 1q ¨ φi, (2.11)

where pxi, yiq, i “ 1, . . . , n, are the performed trials, pωi, φiq, φi “ ξpωiq, i “

1, . . . , d` 1, are the trials at the vertices of the simplex and νip¨q are the weights,
obtained from the equality x “

řd`1
i“1 νipx,ωj, j “ 1, . . . , d` 1q ¨ ωi.

Denoting by xS the point equidistant to the vertices of the simplex and by ∆S

the corresponding distance, the quadratic function of variance is defined as

s2
px|ξpxiq “ yi, i “ 1, . . . , nq “ σ2

¨ p∆2
S ´ }xS ´ x}2q, (2.12)

where σ is a parameter. s2px|¨q vanishes at the vertices and is maximum at xS ,
analogously to that of the Wiener process.

2.2.2 Seminal Conceptual Algorithms

This section introduces two conceptual algorithms, namely the Maximum ex-
pected improvement algorithm (the name One-step Bayesian algorithm could be
used as an equivalent) and the P-algorithm, employing statistical models of the
objective function in the process of the search for the global minimum. The
former originated as a practically feasible simplification of an optimal Bayesian
algorithm [66], optimal with respect to the class of stochastic functions as statist-
ical models of fpxq. The latter appeared in the first paper [53], modeling fpxq as
the Wiener process and was later theoretically justified as a rational algorithm
by an axiomatic definition in [95]. These are the seminal algorithms further
developments of which constitute the body of literature on statistical models in
global optimization.
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Let a family of random variables ξpxq, x P A, be assumed as a statistical model
of fpxq. In both algorithms a new point for the function evaluation is selected,
optimizing some statistically-defined criterion based on the distribution of ξpxq,
conditioned on previously performed function evaluations. Some background
information and general expressions for both of these algorithms are given in the
present section. Note that specific versions of the algorithms can be obtained by
fixing a certain statistical model ξpxq, x P A, for instance, a Gaussian stochastic
function. Moreover, each single implementation is influenced by the selected
way of solving the auxiliary optimization problems in these equations. Finally, it
is important to stress the fact that the algorithms to be presented shortly provide
a deterministic result for a deterministic objective function, since the assumed
statistical model is only used to motivate the design of the algorithms, but the
steps of the algorithms are not randomized.

2.2.2.1 The Maximum Expected Improvement Algorithm

A simplification to a global optimization algorithm, introduced in [66] as an
optimal Bayesian algorithm, possessing the property of the average-case optim-
ality with respect to a statistical model ξpxq, x P A, led to the development of the
well-known Maximum expected improvement algorithm.

Specifically, let a class Z of algorithms be defined by the budget of n objective
function evaluations. An algorithm ζ “ pζ1, . . . , ζnq P Z defines a sequence of
function evaluations

x1 “ ζ1, (2.13)

xk “ ζkpxi, ξpxiq, i “ 1, . . . , k ´ 1q, k “ 2, . . . , n, (2.14)

and accepts xonpζq P A : ξpxonq “ mini“1,...,n ξpxiq, as an approximation to the
global minimizer. The algorithm ensuring the smallest expected error after
n function evaluations is called the Bayesian algorithm and is defined by the
following formula:

ζ̂ “ arg min
ζ

Epξpxonpζqq ´min
xPA

ξpxqq, (2.15)
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where Ep¨q denotes the expectation with respect to the probability measure of
a stochastic function ξpxq. Due to implementation complexity of the above
algorithm, a simplification under the title One-step Bayesian algorithm was pro-
posed in [66], formulated as

xn`1 “ arg min
xPA

Epminpξpxq, yonq|ξpxiq “ yi, i “ 1, . . . , nq, (2.16)

where Ep¨|¨q denotes the conditional expectation. An equivalent and more
popular version of (2.16) is expressed in terms of the expected improvement over
the current record value and referred to as the Maximum expected improvement
algorithm:

xn`1 “ arg max
xPA

Epmaxpξpxq ´ yon, 0q|ξpxiq “ yi, i “ 1, . . . , nq. (2.17)

The algorithm (2.17) was popularized by the appearance of the paper [49], where
its specific implementation was suggested, involving the DACE statistical model
[75] (polynomial regression with additive stationary non-isotropic Gaussian
noise) and the optimization of the expected improvement by means of a branch-
and-bound technique. The resulting implementation was termed Efficient global
optimization algorithm (EGO), enjoying higher popularity, although obscuring
the actual origins of the conceptual algorithm.

2.2.2.2 The P-algorithm

One possible theoretical justification of a global optimization algorithm design
is the optimality of the resulting algorithm with respect to a certain criterion,
e. g. the minimum expected error over the class of stochastic functions in the
case of the optimal Bayesian algorithm [66].

An alternative approach to defining the global optimization algorithm was
taken in [95] where the problem of the definition of a rational algorithm was
addressed. An algorithm was formulated as a sequence of rational decisions
under uncertainty according to the general practice in the theory of rational
choice. The name P-algorithm was assigned to this algorithm.
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The P-algorithm defines the next function evaluation location as

xn`1 “ arg max
xPA

Ppξpxq ď yon ´ εn|ξpxiq “ yi, i “ 1, . . . , nq, (2.18)

where Pp¨|¨q denotes the conditional probability. Equation (2.18) means that the
P-algorithm places a new function evaluation at a point of the feasible region,
where the probability to improve upon the current record yon by a parameter
εn ą 0 is the greatest. The balance of the global and local search can be regulated
using parameter εn: the greater its value, the more global the search.

A 1-dimensional version of the P-algorithm, where ξpxq is the Wiener process,
appeared in [53] as the first global optimization algorithm using a statistical
objective function model.

The summary of an axiomatic justification of this algorithm in [95] follows.
Assuming the generalized statistical model of fpxq to be the family of Gaussian
random variables ξpxqwith conditional probability densities pxp¨qwith respect to
previous trials pxi, yiq, i “ 1, . . . , n, the choice of the next trial location x P A can
be interpreted as the choice between probability densities pxp¨q. If the relation of
preference, denoted px1 ľ px2 (when px1 is not less preferable than px2), agrees
with certain rationality axioms, there exists a utility function uptq such that

px1 ľ px2 ðñ

ż 8

´8

uptqpx1ptqdt ě

ż 8

´8

uptqpx2ptqdt. (2.19)

I. e. the expected value of utility of choosing x1 is not smaller than that of
choosing x2, if one is to prefer x1 at least as much as x2 as a candidate for the
next function evaluation location. It is proved that the only utility function
that satisfies the rationality axioms is uptq “ Ipŷon ´ tq, where ŷon ă mini“1,...,nyi

and Ip¨q is a unit-step function. Thus, the next function evaluation should be
performed at xn`1 “ maxxP pξpxq ă ŷonq.

Under certain general assumptions on the optimization problem and the stat-
istical model, the P-algorithm converges to the global minimum, i. e. yon Ñ
minxPA fpxq. The required conditions are satisfied by the Wiener process and the
generalized statistical model, discussed in Section 2.2.1.3 [93].
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2.2.3 Further Developments

The conceptual algorithms, discussed in Section 2.2.2, continue to inspire a
variety of emerging modifications, motivated primarily by decreasing the com-
plexity and expanding the applicability of these methods.

The use of a statistical model necessitates the specification of its parameters, e. g.
for a stationary isotropic Gaussian random field the mean as well as parameters
of the covariance function have to be specified. A possible approach is to estim-
ate these parameters from the already performed trials pxi, yiq, i “ 1, . . . , n. For
example, the maximum likelihood estimates are used in [62, 75]. The estimation
of parameters for small n is problematic. It is demonstrated in [51] that per-
formance of the Maximum expected improvement algorithm is positively affected
by applying the parametric bootstrapping to model parameter estimation.

The problem of noise in the computed values of fpxq is addressed from the very
beginning of the statistical model-based approach to global optimization in [53].
Implementation difficulties arising in such a case are addressed in [17]. In [42], a
development of the Maximum expected improvement algorithm is proposed where
the expected improvement criterion is augmented to account for random noise
in the measured outputs of fpxq. Systematic errors, arising from the availability
of multiple-fidelity versions of fpxq, are incorporated in the maximum expected
improvement expression in [41].

The auxiliary optimization problems in (2.18) and (2.17) over the original domain
A might be multimodal, imposing a need for a supplementary global optimiz-
ation method to solve them. A divide-and-conquer approach, inspired by the
algorithms of the branch-and-bound type, was adapted to address this problem
in a series of papers [11, 16, 30, 110, 113, 114]. Specifically, the methods share the
idea of decomposing the feasible region into a set of subsets (either simplices or
hyper-rectangles) with known objective function values at the vertices. For each
subset, an analogue to the improvement probability maximum is computed as
a selection criterion. A subset with the highest criterion value is selected and
partitioned at each step of the algorithm, refining the previous decomposition.
Thus the auxiliary problem (2.18) is reduced to a set of problems over subsets
and the need for an additional global optimization algorithm is eliminated. The
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2. Global Optimization Based on Statistical and Lipschitz Objective Function Models

resulting research direction seems to deserve further attention.

2.3 Global Optimization Based on Lipschitz Mod-

els

A real-valued function fpxq is said to satisfy the Lipschitz condition, if

|fpx1q ´ fpx2q| ď L}x1 ´ x2}, @x1, x2 P A, (2.20)

where L is a constant (called Lipschitz constant), A “ tx P Rd : ai ď xi ď bi, i “

1, . . . , du is a hyper-rectangle, and the norm } ¨ }might be Euclidean or a different
one.

The theoretically attractive assumption (2.20) means that the rate of change
of the function is bounded, facilitating the investigation of the convergence
properties of the algorithms. The assumption is also rather realistic for practical
black-box problems, resulting in applications of the respective algorithms to
various real-world problems.

The condition (2.20) is usually exploited by deterministic algorithms, requiring
no repeated runs. Moreover, meaningful stopping conditions can be defined
based on the bounds on the proximity to the global minimum. However, the
main problem of the model is the generally unknown Lipschitz constant L.
Its overestimate might result in a search that is overly exhaustive, wasting
computational resources while its underestimate might result in a missed global
minimum. Moreover, it might differ over subregions of A. Furthermore, even if
the Lipschitz constant is known, the search space might be too large to obtain a
sufficiently precise solution. The algorithms either rely on an a priori supplied
constant value or maintain its (global or local) estimate updated in the course of
the optimization process, or consider a set of its possible values simultaneously.

Alternative global optimization problem formulations have been addressed in
the literature. Since the problem of finding

x˚ P A : fpx˚q “ f˚, (2.21)
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2.3. Global Optimization Based on Lipschitz Models

is solvable in a finite number of function evaluations only under very restrictive
assumptions on fpxq and in the ideal case of a known Lipschitz constant, an
alternative problem statement requires to find

x1 P A : fpx1q ď f˚ ` ε, ε ą 0. (2.22)

Algorithms, providing a solution to (2.22) after a finite number of function
evaluations, are called ε-convergent, while the respective point x1 is called ε-
optimal.

The present section describes the univariate and multivariate approaches to
Lipschitz optimization. For a comprehensive treatment of the Lipschitz optimiz-
ation methods, the reader is referred to [34, 39, 73].

2.3.1 The Univariate Case

Let us assume that the Lipschitz constant L and ordered objective function
evaluations pxni , yni q, i “ 1, . . . , n, are known. Then the lower-bounding function
of fpxq

Fnpxq “ max
i“1,...,n

pyni ´ L|x´ x
n
i |q, (2.23)

is often referred to as the saw-tooth cover of fpxq due to its shape. The successive
points xni and xni`1 are called the basis points of the tooth i. The minimum of
Fnpxq over rxni , xni`1s and the corresponding point x̂i are called the height and
the peak point of the tooth i, respectively. Moreover, the region of indeterminacy
is defined as the set, where the global minimum x˚ might still be located, and
corresponds to the union of the intervals

Ť

i“1,...,nrαi, βis obtained by intersecting
the horizontal line at height yon with the saw-tooth cover. Figure 2.2 illustrates
the introduced concepts.

The univariate Lipschitz optimization has been theoretically very well-explored
and efficient optimization algorithms are known.

Let us cover some of the univariate ε-convergent algorithms, starting with the
passive one that evaluates the objective function at equally-spaced locations
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2. Global Optimization Based on Statistical and Lipschitz Objective Function Models

xni αi x̂i βi xni+ 1 αi+ 1 x̂i+ 1 βi+ 1 xni+ 2

x

Fn(x̂i)

Fn(x̂i+ 1)

yon

f(xni+ 1)

f(xni+ 2)

f(
x
)

Figure 2.2: Illustration of the common concepts in the univariate Lipschitz
optimization. The objective function fpxq is displayed as a thick solid line, while
the saw-tooth cover Fnpxq is shown by a dashed line.

over A “ ra, bs in order to guarantee ε-convergence in n “ r
Lpb´aq

2ε
s objective

function evaluations. The function is evaluated at a` 2kε
L

, k “ 1, . . . , n.

The best possible algorithm by Danilin [20, 21] depends on the knowledge of the
global minimum value f˚ which is generally unknown, however, it serves only
to provide a minimum number of function evaluations nB required to guarantee
that the ε-optimal value is found. The obtained number serves to study the
efficiency of other sequential optimization algorithms, for which the global
minimum value is unknown. It is worth noting that no analogous benchmark
algorithm is known in the multivariate case.

In the worst case scenario, which corresponds to the constant function, the
best possible algorithm requires the same number of function evaluations as the
passive algorithm. That means that the passive algorithm is worst-case optimal
and no sequential algorithm can surpass it. In a typical scenario, however,
sequential algorithms perform more efficiently than the passive one, and their
performance is assessed with respect to the best possible algorithm.

The first and the most popular globally ε-convergent sequential optimization
algorithm in the univariate case is the Pijavskij-Shubert algorithm [70, 84]. It is
a sequential algorithm, performing every new function evaluation at a point
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2.3. Global Optimization Based on Lipschitz Models

corresponding to the global minimum of the current saw-tooth cover Fnpxq:

xn`1 “ arg min
xPA

Fnpxq. (2.24)

The algorithm terminates when the record value yon does not exceed the global
minimum value of the saw-tooth cover by more than ε. The algorithm was
shown to be one-step worst-case optimal in [44, 45, 91]. It requires up to four
times more objective function evaluations to guarantee ε-convergence than the
best possible algorithm [35]. Moreover, in the worst-case scenario, the Pijavskij-
Shubert algorithm requires up to two times more function evaluations than the
passive algorithm. Interestingly, when the Lipschitz constant approaches infinity,
the algorithm degenerates to the grid search, i. e. after 2k`1, k “ 1, 2, . . . function
evaluations, the trial points form a uniform grid over the feasible interval [48].

Modifications of the Pijavskij-Shubert algorithm addressing efficiency in the
worst case were suggested in [77, 92]. In essence, only the points of a certain
passive strategy are eligible as function evaluation locations and, as a result,
the next function evaluation location, determined by the original algorithm, is
replaced by the closest point on a grid of a passive algorithm.

A two-phase approach by Hansen, Jaumard and Lu [36] combines the Pijavskij-
Shubert algorithm for discarding large portions of the search space with an
approximation to the best possible algorithm for exploring the remaining region
of indeterminacy. The efficiency of the approach was shown to be close to that
of the best possible algorithm when a high precision of the solution was required,
i. e. for small ε [34].

2.3.2 The Multivariate Case

In the multivariate case, several approaches to deal with the Lipschitz optimiza-
tion were used.

First, a multivariate problem can be reduced to a univariate one. A nested
approach, proposed in [70], restates the original multivariate problem as a
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2. Global Optimization Based on Statistical and Lipschitz Objective Function Models

sequence of nested univariate optimization problems:

min
xPA

“ min
x1PX1

t min
x2PX2px1q

t. . . min
xdPXdpx1,...,xd´1q

fpxquu, (2.25)

where Xkpx1, . . . , xk´1q, k “ 1, . . . , d, is an interval rak, bks, and the minimization
is performed when the values xk, k “ 1, . . . , d´ 1, are fixed.

Moreover, Peano curves for conversion to the univariate case were proposed
in [10, 90]. A notable disadvantage of this approach is that the distances on the
resulting curve might be considerably greater than those in the original domain,
resulting in several local minima where only one is actually present.

In the second category of multivariate methods, the univariate Pijavskij-Shubert
algorithm is generalized to the multivariate case by constructing a single lower-
bounding function over the feasible region as an analogue to the univariate
saw-tooth cover [8, 46, 63, 65, 70, 104]. The objective function is then evaluated
at the peaks of the lower bound, which are, however, expensive to locate. The
approaches in this category rely on solving systems of linear and quadratic
equations to identify the set of all local minima and, consequently, the global
minimum of the lower bound and suggest various simplifications of these
systems.

The third category consists of the branch-and-bound techniques, corresponding
to the general framework, described in [38, 39], with specific algorithms obtained
by defining different ways of selecting subproblems, branching and computing
the bounds [28, 32, 64, 72]. The algorithms in this category generally require
more objective function evaluations to ensure ε-convergence than the algorithms
using a single lower-bounding function; however, the latter spend a very long
time in search of the global minimum of the lower bound as the number of
performed function evaluations increases [34]. The case of the simplicial subsets
in the branch-and-bound framework is thoroughly discussed in [68], including
the effect of various norms in (2.20) as well as different sources of the Lipschitz
constant.

Among the various partitioning schemes in the branch-and-bound literature,
the trisection-based ones seem to be the most efficient. In particular, when the
subsets over which the subproblems are defined are hyper-rectangular, each of
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2.3. Global Optimization Based on Lipschitz Models

them might be represented by two objective function values at the endpoints
of the main diagonal, as originally suggested in [71]. A special approach of ad-
aptive diagonal partitions [79], characterized by dividing each hyper-rectangle
into three equal parts, ensures that the redundancies in the description of the
objective function over the subsets are eliminated and the already performed
trials reused. Moreover, the generated trial points can be viewed as lying on
an alternative type of a space filling curve, and the multivariate optimization
problem can thus be interpreted as a set of univariate optimization problems
over the diagonals of the hyper-rectangular subsets. The efficiency of a different
trisection-based partitioning rule has been pointed out by other authors as well
[32].

2.3.3 The DIRECT Algorithm and Its Extensions

The DIRECT algorithm [48] was introduced as a multivariate extension to the
univariate Pijavskij-Shubert algorithm [70, 84]. However, instead of relying on an
overestimate of the Lipschitz constant, the algorithm considers all possible rate-
of-change constants simultaneously, ensuring an efficient balance between the
global and local search. The algorithm is a direct search type technique, meaning
that it uses only the objective function values in the optimization process and
no knowledge of derivatives. Due to good performance and a small number of
parameters the algorithm gained great popularity.

The algorithm iteratively refines a hyper-rectangular decomposition of the feas-
ible region A “ r0, 1sd until the budget of function evaluations is exceeded. Each
hyper-rectangle in the decomposition is characterized by the objective function
value at the center location ci and the distance ∆i from the center to the vertices,
corresponding to some point on the plane in Figure 2.3. At each iteration a set of
potentially optimal hyper-rectangles are selected for partitioning according to
their lower bound of fpxq. A hyper-rectangle i is considered potentially optimal
if a rate-of-change constant K̃ ą 0 and some ε ą 0 exist such that

fpciq ´ K̃∆i ď fpcjq ´ K̃∆j, @j, (2.26)

fpciq ´ K̃∆i ď yon ´ ε|yon|. (2.27)
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∆
f(ci)− K̃∆i

f(ci)

f(
c)

slope= K̃

i

Figure 2.3: Illustration of the selection of hyper-rectangles in DIRECT.

The condition (2.26) means that for a potentially optimal hyper-rectangle i, a
slope K̃ exists such that the lower bound of fpxq over this hyper-rectangle
is the lowest. The condition (2.27) means that a nontrivial improvement in
the potentially optimal hyper-rectangle is still possible. Note that the vertical
intercept of a line with slope K̃ passing through a point in Figure 2.3 corresponds
to the lower bound of the function with a rate-of-change constant K̃ over the
respective hyper-rectangle. In the visual representation, the condition (2.26)
translates to all the points in the diagram being above the line with slope K̃,
passing through point i. Consequently, all potentially optimal hyper-rectangles
are located on the lower-right of the convex hull of the points in Figure 2.3 and
are shown as black points.

The selected hyper-rectangles are divided into thirds along the longest edges
in a certain way, which determines that the diagonal lengths of the produced
hyper-rectangles assume values in a discrete set, resulting in vertical groups of
points in Figure 2.3.

Hyper-rectangles of different sizes are selected for partitioning at each iteration,
as can also be seen in the figure, including at least one of the largest hyper-
rectangles. Thus at each iteration some effort is spent both on the global and
local search, which is considered a strength of the algorithm. Moreover, the
approach based on considering a set of admissible rate-of-change constants
K ą 0 in the definition of the potentially optimal hyper-rectangles eliminates the
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2.3. Global Optimization Based on Lipschitz Models

need for specifying a single Lipschitz constant, which is also a great advantage.

However, several disadvantages of DIRECT were pointed out in the literature.
First, it locates the regions of local optima quickly, but further convergence to
the global minimum is slow. This happens due to an excessive partitioning of
the hyper-rectangles in the vicinity of sub-optimal local minimizers. Moreover,
no meaningful stopping criterion could be applied to DIRECT apart from the
limit on the number of function evaluations.

Various modifications were proposed in order to overcome the weaknesses of
the algorithm.

An approach automatically balancing explicitly defined local and global phases
in the operation of DIRECT algorithm was initially proposed in [78]. The already
known best solution is refined during the local phase, whereas large hyper-
rectangles are partitioned in the global phase in search of better local minima.
Moreover, the partitioning strategy of DIRECT is replaced with that of the
adaptive diagonal partitions. A similar two-phase approach was later adapted
in the context of simplicial global optimization in [69].

A globally-biased version aggressive DIRECT was proposed in [7]. All hyper-
rectangles with the lowest value fpcq within each group are subdivided irre-
spective of the potential optimality condition. A locally-biased version DIRECT-l
was introduced in [27], targeting low-dimensional problems with a few local
minimizers. The essential features are the grouping of hyper-rectangles by their
longest edges, dividing at most one hyper-rectangle per group and allowing
even the trivial improvements. Thus the number of groups and divisions within
each group is reduced, predominantly in the unexplored regions.

In [57, 58], bi-level and multi-level versions of DIRECT were proposed where
DIRECT is applied on different scales. On the coarsest scale, the whole set of
produced hyper-rectangles is considered for further refinement, while on finer
scales only a percentage of the smallest hyper-rectangles is considered. Thus
the algorithms zoom in on the already explored regions, rendering the strategy
suitable for approximating solutions with high accuracy.

The high precision of the solution was raised as the primary concern in [60, 61],
where it was noticed that DIRECT exhausts the available memory by storing the
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produced hyper-rectangles before the required precision of the global minimum
value is attained. To obtain the required precision, the usual iterations of DIRECT
are enhanced with local searches started at potentially optimal hyper-rectangles,
furthermore, the algorithm is re-executed a number of times after applying
certain search space transformations. The resulting algorithms require a great
number of function evaluations.

2.4 Chapter Summary and Conclusions

1. The described global optimization algorithms relying on a statistical model
of the objective function are defined either as an approximation to the op-
timal Bayesian algorithm or by means of the rational choice theory. The
original form of the algorithms involves expensive auxiliary optimization
problems, that need to be simplified in order to expand the applicabil-
ity of the algorithms. It is, therefore, promising to further explore the
decomposition-adjusted statistical models and related algorithms, because
computations can be simplified and the theoretical investigation can be
conducted.

2. The discussed statistical methods spend considerable resources on careful
planning of the trial points, which renders them applicable to engineer-
ing problems with expensive objective functions. The high cost of the
objective function evaluations motivates to look for ways to accelerate the
approximation of the global minimum in terms of the number of trials.

3. The choice of the statistical model in the definition of respective optim-
ization algorithms is usually based on the previous practice, subjective
assessment of its adequacy to the problem and computational complexity
considerations. However, the systematic investigation of the impact that
specific assumed models have on the optimization results, when the ob-
jective function precisely corresponds to the assumed model, as well as
when it does not, would be interesting.

4. Additional theoretical justification of specific ad hoc choices in the design
of algorithms continues to arise interest.
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2.4. Chapter Summary and Conclusions

5. The univariate single-objective Lipschitz optimization has been theoret-
ically well explored. The number of trials performed by the best possible
algorithm constitutes a quality measure for univariate Lipschitz optimiz-
ation algorithms. The algorithms approaching the efficiency of the best
possible algorithm are known. Theoretical analysis of the univariate case
with a greater number of objectives could be a focus of interest.

6. Theoretical analysis of the multivariate Lipschitz optimization is con-
siderably poorer. The corresponding algorithms either generalize the
Pijavskij-Shubert algorithm or interpret the branch-and-bound framework
in a certain way. In the former approach, both rectangular and simplicial
subsets are used.

7. A popular multivariate algorithm DIRECT combines the ideas of the uni-
variate Lipschitz optimization and the branch-and-bound techniques with
hyper-rectangular subsets. Ideas of addressing its weaknesses might be
relevant for improving the algorithms using decomposition-adjusted stat-
istical objective function models.

8. The worst-case analysis is a common theme in Lipschitz optimization, as
opposed to the average-case analysis. Conversely, the reviewed algorithms
based on statistical models of objectives are designed to provide the best
average-case performance.
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Chapter 3

Choice of Statistical Model

This chapter focuses on the statistical models of an objective function used in the
definition of a global optimization algorithm. An experimental methodology
employed to support the choice of the statistical model of the objective function,
based on the results with the two conceptual algorithms - the P-algorithm and
the Maximum expected improvement algorithm - is presented. After an introduction
in the first section, the second section formulates the problem of the study. The
considered objective function models are introduced in the third section. The
fourth section deals with the specific forms of the conceptual algorithms defined
for the considered models. The numerical experiments are detailed in the fifth
section. The final section presents the conclusions.

3.1 Introduction

Intuitively, we expect that an assumed specific model of the objective function
chosen for the definition of a global optimization algorithm does affect the op-
timization process. This model might be chosen with a number of considerations
in mind such as the a priori available information on the objective function and
the level of implementation complexity of an associated model. It is therefore
interesting to find out which considerations matter, and what the effect might
be for various models assumed as well as for various objective functions.
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3.2. Statement of the Problem

3.2 Statement of the Problem

Let us consider the global optimization problem (2.1). Let ξpxq, x P A, be as-
sumed as a statistical model of the objective function in the P-algorithm (2.18) and
the Maximum expected improvement algorithm (2.17). Let the expensive black-box
objective function fpxq be a realization of some (possibly different) statistical
model. Given a small budget of function evaluations, the goal is to quantify the
expected outcome of finding/missing the global minimizer.

3.3 Considered Models

In global optimization it is customary to adapt a statistical objective function
model that has been well-researched from the probability theory point of view.
The family of Gaussian stochastic functions is the best-known example. The
first model applied in the global optimization context was the Wiener process
[53], which belongs to this family. Moreover, a common and computationally
convenient subcategory is stationary isotropic Gaussian stochastic functions,
characterized by the constant mean µ and standard deviation σ, as well as
a correlation function ρpτq, τ ě 0, invariant with respect to the class of rigid
motions:

corrpx1, x2q “ ρp}x1 ´ x2}q “ ρpτq, τ ě 0, @x1, x2 P Rd. (3.1)

This chapter focuses on several specific 1- and 2-dimensional Gaussian stochastic
functions used as objective function models. The characteristics of the con-
sidered stochastic functions are given in Tables 3.1 and 3.2. The names for the
stationary isotropic Gaussian stochastic functions are selected to reflect the cor-
relation function used. Respective realizations are shown in Figures 3.1 and 3.2.

The considered 1-dimensional models in Table 3.1 are well-known. The Wiener
process was the first model applied to global optimization, while both stationary
Gaussian processes are widely used in the geostatistics. The Wiener process and
the stationary Gaussian process with the Exponential correlation function possess
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Figure 3.1: Examples of realizations of the 1-dimensional Gaussian random
processes, listed in Table 3.1. Top: Wiener process with σ “ 1. Bottom: stationary
Gaussian processes with µ “ 0, σ “ 1 and the following correlation functions:
bottom left: ρpτq “ expp´τ{0.2q (Exponential correlation function), bottom right:
ρpτq “ expp´pτ{0.2q2q (Gaussian correlation function).

the Markov property, enabling to simplify expressions of certain conditional
characteristics of the process (see Appendix A for specific expressions).

The concept of short-range variability (or, alternatively, activity of a function) is
best perceived visually, e. g. using Figure 3.1. The sample functions of the
Wiener process and the stationary Gaussian process with Exponential correlation
function can be characterized as rough, rugged or uneven. It is obvious that the
opposite could be stated with regard to the relatively unwrinkled realizations of
the stationary Gaussian process with the Gaussian correlation function. In order
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Figure 3.2: Examples of realizations of the 2-dimensional stationary isotropic
Gaussian random fields with µ “ 0, σ “ 1 and correlation functions ρpτq, τ ě 0,
given in Table 3.2. The scale parameters of the correlation function are set to the
following values: c “ 0.2 for Exponential, c “ 0.2 for Stable, c “ 0.2 for Gaussian,
c “ 0.4 for Spheric, c “ 0.5 for Gneiting-2, c “ 0.5 for Gneiting-4 fields.
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Table 3.1: Characteristics of 1-dimensional random processes.

Process

Wiener Description: Gaussian process with zero mean and covariance function
covpξpx1q, ξpx2qq “ σ2 minpx1, x2q, x1, x2 ě 0;
Gaussian increments ξpx` δq ´ ξpxq „ Np0, σ2δq are
independent for disjoint intervals;
Realizations are not differentiable anywhere with probability 1

Parameters: σ ą 0
Level of short-range
variability:

High

Markov property: Yes

Exponential Description: Gaussian stationary process with
exponential correlation model ρpτq “ exp

`

´ τ
c

˘

, τ ě 0;
Not mean-square differentiable

Parameters: µ, σ ą 0, c ą 0
Level of short-range
variability:

High

Markov property: Yes

Gaussian Description: Gaussian stationary process with Gaussian (squared exponential)
correlation model ρpτq “ exp

´

´
`

τ
c

˘2
¯

, τ ě 0;
Mean-square derivatives of all orders exist

Parameters: µ, σ ą 0, c ą 0
Level of short-range
variability:

Very low

Markov property: No

to avoid confusion stemming from an improper use of smoothness and differenti-
ability concepts with respect to the realizations of the stochastic functions, the
term short-range variability will be used to refer to the relative ruggedness of the
realizations of all the considered stochastic functions.

Table 3.2 lists a number of stationary isotropic Gaussian random fields, con-
sidered in this study as 2-dimensional objective function models. The models
are arranged by decreasing level of short-range variability. Moreover, three
of them (Spheric, Gneiting-2 and Gneiting-4) have compactly-supported correla-
tion functions, resulting in sparse correlation matrices that could be processed
by special algorithms. The expressions of the correlations for these models in
Table 3.2 are valid up to the third dimension only.

The number of derivatives at 0 of the correlation functions of models Gneiting-2
and Gneiting-4 is equal to 2κ, while the largest dimension where ρpτq qualifies
as a correlation function is equal to 2γ (see Table 3.2). Specifically, 2γ “ 3 for
both models means that ρpτq qualifies as a correlation function up to the third
dimension. In addition, the correlation functions of models Gneiting-2 and
Gneiting-4 are, respectively, 2 and 4 times differentiable at 0 (hence the names of
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Table 3.2: Characteristics of the stationary isotropic Gaussian random fields
with parameters µ, σ ą 0, c ą 0.

Field Correlation
model
ρpτq, τ ě 0

Compact
support

Level of
short-range
variability

Dimension
restriction

Exponential exp
`

´ τ
c

˘

No High -

Spheric 1´ 1.5 τ
c
` 0.5

`

τ
c

˘3
1r0,1s

`

τ
c

˘

Yes High ď 3

Stable exp
`

´
`

τ
c

˘α˘, α “ 1.8 No Low -

Gneiting-2 p1` β τ
c
qp1´ τ

c
qβ1r0,1sp

τ
c
q,

β “ γ ` 2κ` 0.5, γ “ 1.5, κ “ 1
Yes Low ď 3

Gneiting-4

´

1` β τ
c
`
β2´1

3
p τ
c
q2
¯

p1´ τ
c
qβ1r0,1sp

τ
c
q,

β “ γ ` 2κ` 0.5, γ “ 1.5, κ “ 2
Yes Low ď 3

Gaussian exp
´

´
`

τ
c

˘2
¯

No Very low -

the models), and thus the sample surfaces of Gneiting-4 exhibit relatively smaller
short-range variability (see Figure 3.2).

3.4 Special Forms of the Algorithms

This section presents the specialized versions of the two conceptual algorithms
- the P-algorithm (2.18) and the Maximum expected improvement algorithm (2.17),
obtained for the case when the objective function model ξpxq, x P A, is a Gaussian
stochastic function, as the study presented in this chapter considers only this
particular type of models (see Section 3.3). The experiments described in this
chapter are based on the performance of these algorithms, aiming to evaluate the
suitability of different assumed objective function models, used in the definition
of the algorithms.

In the considered case, the P-algorithm can be expressed as

xn`1 “ arg max
xPA

Ppξpxq ď yon ´ εn | ξpxiq “ yi, i “ 1, . . . , nq “ Φ pωnpx, εnqq , (3.2)

Φpzq “
1

2π

ż z

´8

expptqdt, (3.3)

ωnpx, εq “
yon ´ ε´mpx|ξpxiq “ yi, i “ 1, . . . , nq

spx|ξpxiq “ yi, i “ 1, . . . , nq
, (3.4)
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where Φp¨q is the Gaussian cumulative distribution function, while mpx|¨q and
s2px|¨q denote the conditional mean and conditional variance of ξpxq, respectively.
Since Φp¨q is a monotonically increasing function, an equivalent algorithm results
by maximizing the argument ωnpx, εq directly:

xn`1 “ arg max
xPA

ωnpx, εq “ arg max
xPA

yon ´ ε´mpx|ξpxiq “ yi, i “ 1, . . . , nq

spx|ξpxiq “ yi, i “ 1, . . . , nq
. (3.5)

The Maximum expected improvement algorithm for a Gaussian stochastic function
ξpxq, x P A, is expressed as

xn`1 “ arg max
xPA

ˆ

vnpxqΦpvnpxqq `
1

2π
exp

ˆ

´
v2
npxq
2

˙˙

(3.6)

vnpxq “
yon ´mpx|ξpxiq “ yi, i “ 1, . . . , nq

spx|ξpxiq “ yi, i “ 1, . . . , nq
. (3.7)

The expressions to compute the conditional characteristics mpx|¨q and s2px|¨q for
stationary isotropic Gaussian stochastic functions are (2.5) and (2.6), respectively;
some special cases, considered in this study, are given in Appendix A.

3.5 Numerical Experiments

This section introduces an experimental methodology to be used for evaluating
the performance of the two considered algorithms, the P-algorithm and the Max-
imum expected improvement algorithm, with respect to the various combinations
of the assumed and actual objective function models. More precisely, in the
definition of an algorithm one of the objective function models, discussed in
Section 3.3, is used and called the assumed model. The resulting version of the
algorithm is applied to the objective function that is a realization of either the
same or possibly different model, called the actual model.
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3.5.1 The Objective Functions

In this study, the realizations of the models, i. e. Gaussian stochastic functions
(described in Section 3.3), were used as objective functions. The R package
RandomFields [76] was used to generate all realizations of the stationary iso-
tropic Gaussian stochastic functions (procedure RFsimulate) and to obtain the
maximum likelihood estimates (MLEs) of their parameters (procedure RFfit).
The realizations of the Wiener process were generated using the Wiener bridge
methodology, starting with values at the interval endpoints and generating a
conditional random value at the midpoint of the interval.

The 1-dimensional case. In the 1-dimensional case, a total of 1000 realizations
of each of the random processes considered in Table 3.1 were generated. Each
realization was represented by its values at the points of the interval r0, 1s:
ti “ i{N , i “ 0, . . . , N , N “ 1000. The parameters for the processes were:
σ “ 1 for the Wiener process, µ “ 0 and σ “ 1 for the stationary Gaussian
processes. Based on the visual examination of the sample functions of the
Gaussian model, its scale parameter c “ 0.07 was set trying to ensure that
the generated realizations contain at least one deceptive local minimum highly
similar to the global minimum. To match the level of variation in the sample path
values, we estimated the parameter c of the Exponential model by finding the
MLEs of µ, σ and c from the uniformly-spaced values at ti “ i{M , i “ 0, . . . ,M ,
M “ 10, of each of the Gaussian sample functions. The scale parameter for the
Exponential model c “ 0.06 close to the mean of the corresponding estimates (see
Table B.1 for parameter estimation statistics) was chosen.

The 2-dimensional case. Analogously, in the 2-dimensional case, 1000 realiza-
tions of each of the stationary isotropic Gaussian random fields in Table 3.2 were
generated to be used as objective functions in the experiments. Each realization
was represented by values on a grid of points tij “ pi{N, j{Nq, i, j “ 0, . . . , N ,
N “ 100. For all stochastic functions, µ “ 0 and σ “ 0 were used. The scale para-
meters c were set according to the following argument. To generate the sample
functions for experimentation, the Gaussian model scale parameter c “ 0.2 was
first selected by visual examination of the realizations. Then, according to this
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model, 1000 realizations were generated. The MLEs of scale parameters of the
remaining models were determined from the values of these realizations at the
points of a sparser grid: kij “ pi{M, j{Mq, i, j “ 0, . . . ,M , M “ 4. The scale
parameter c values for each of the models were set equal to the means of their
estimates over 1000 Gaussian model realizations (see Table B.2 for parameter
estimation statistics). The following values were used: c “ 0.2 for Exponen-
tial model, c “ 0.4 for Spheric model, c “ 0.2 for Stable model, c “ 0.5 for
Gneiting-2 model and c “ 0.5 for Gneiting-4 model. The statistics of MLEs of all
combinations of the assumed and actual models are given in Table B.2.

3.5.2 The Implementation of the Algorithms

This section discusses the details of implementation of the P-algorithm and the
Maximum expected improvement algorithm. First, since each of the algorithms
assumes a certain parametric statistical model of the objective function, the
details of the assumed model parameter estimation are presented. Second,
the specifics of solving an auxiliary optimization problem in order to select a
new function evaluation location at each step of the algorithms are given. The
rationale behind the selection of the P-algorithm parameter εn is also discussed.

Parameter estimation. Each of the algorithms assumes a certain statistical
model (assumed model) of the objective function that is generated according to
a possibly another model (actual model). The assumed model has a set Θ of
parameters that have to be estimated and set in order to complete the definition
of the algorithm. Let us recall that the models considered in this study are
Gaussian stochastic functions. One of them is the Wiener process, characterized
by a single parameter, i. e. Θ “ tσu. The rest of the models are stationary
isotropic Gaussian stochastic functions, parametrized by the mean, standard
deviation and the correlation function scale parameter, i. e. Θ “ tµ, σ, cu.

Suppose an optimization algorithm assumes an objective function model with
a set of parameters Θ, while the objective function is generated according to
the actual model. The values of the objective function (i. e. the realization of the
actual model) on a grid were used to estimate the parameters Θ of the assumed
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model to be used in the optimization of that specific objective function. Thus the
parameters had to be estimated 1000 times for each combination of the assumed
and actual models. The grid ki “ i{M , i “ 0, . . . ,M , M “ 10, was used in the
1-dimensional case, while the grid kij “ pi{M, j{Mq, i, j “ 0, . . . ,M , M “ 4, was
used in the 2-dimensional case. For the stationary isotropic Gaussian stochastic
functions the method of maximum likelihood estimation was used, while the
Wiener process covariance function parameter σ was estimated according to the
following formula [102]:

σ̄2
“

1

n

n
ÿ

i“1

ξpxni q ´ ξpx
n
i´1q

xni ´ x
n
i´1

, (3.8)

where xni , i “ 1, . . . , n, are the trial points arranged in an increasing order.

The mean and the standard deviation of the parameter estimates obtained are
given in Tables B.1 and B.2.

Auxiliary optimization problem. Both considered algorithms optimize an
auxiliary criterion for selecting the new location of function evaluation (see
Equations (3.2) and (3.6)). The maximization over a grid of points where the
values of the stochastic function realizations are known was used. Specifically,
at each point of the grid the auxiliary criterion is evaluated, and the point,
where the maximum is attained, becomes the next objective function evaluation
location.

In addition, the criterion computation involves the inversion of the correlation
matrix of the previous trials. It is well-known that this matrix is ill-conditioned
when the assumed model is Gaussian. To deal with this problem, the Moore-
Penrose matrix pseudo-inversion was performed instead of ordinary inversion
for this model.

Definition of optimization success. In the 1-dimensional case, the algorithms
were said to have found the global minimizer x˚ if, for a budget of Nmax “ 35

function evalutions, some trial point xi, i P t1, . . . Nmaxu, was generated that
satisfied the condition:

|xi ´ x
˚
| ď 0.002. (3.9)

43



3. Choice of Statistical Model

Table 3.3: εn strategies for the P-algorithm with every 1-dimensional assumed
model.

Assumed model εn

Wiener

εn “

$

’

&

’

%

0.5, if n ď 10,

0.3
?
n´ 10, if 10 ă n ď 20,

0.2
?
n´ 20, if 20 ă n ď 35.

Exponential
εn “

#

0.5, if n ď 20,

0.5
?
n´ 20, if 20 ă n ď 35.

Gaussian εn “ 0.05p1´ tq ` 0.001t, t “ n
35
.

In the 2-dimensional case, the budget of Nmax “ 50 function evaluations was
used. The global minimizer x˚ “ px˚1 , x

˚
2q was considered to be found if, for

some generated trial point xi “ pxi1, xi2q, i P t1, . . . , Nmaxu, it was true that:

|xij ´ x
˚
j | ď 0.002, j “ 1, 2. (3.10)

The P-algorithm εn parameter. The P-algorithm parameter εn was chosen ex-
perimentally for each of the assumed models. The specific formulas used are
given in Tables 3.3 and 3.4. These formulas were selected as follows. Taking a
specific assumed model, each algorithm was run on the realizations of the same
model, i. e. the assumed and actual models were coincident. Various decaying
εn strategies were employed heuristically, and those that brought about the
criteria (3.9) and (3.10) to be satisfied the greatest percentage of times were
selected.

3.5.3 Experimental Setup

Implementations of the P-algorithm and the Maximum expected improvement al-
gorithm, resulting from different assumptions on the objective function models
considered in this study (Tables 3.1 and 3.2), were run, providing the realizations
of all the considered 1- and 2-dimensional models as objective functions. As a
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Table 3.4: εn strategies for the P-algorithm with every 2-dimensional assumed
model.

Assumed model εn

Exponential
εn “

#

3, if n ď 0.75ˆ 50,

3p1´ tq ` 0.1t, t “ n
50
, if 0.75ˆ 50 ă n ď 50.

Spheric
εn “

#

3, if n ď 25,

3p1´ tq ` 0.1t, t “ n
50
, if 25 ă n ď 50.

Stable
Gneiting-2
Gneiting-4
Gaussian

εn “ 0.05p1´ tq ` 0.001t, t “ n
50

.

result, 1000 runs per combination of an assumed and actual objective function
model were performed.

A situation when the criteria (3.9) and (3.10) were not satisfied for a budget
of trials (Nmax “ 35, if d “ 1, and Nmax “ 50, if d “ 2) was considered a
failure. For each combination of the assumed and actual objective function
model, the percentage of failures out of the 1000 optimization problems was
recorded. The 1- and 2-dimensional results for the P-algorithm are presented
in Tables 3.5 and 3.6, while the analogous results for the Maximum expected
improvement algorithm are presented in Tables 3.7 and 3.8. To facilitate visual
comparison, the darker shades of the cells correspond to higher numbers. The
same results are presented graphically in Figure 3.3.

3.5.4 Results and Discussion

The results presented in Tables 3.5, 3.6, 3.7 and 3.8 (Figure 3.3) suggest that the
analysis should concentrate on the complexity of the objective function. The
higher the short-range variability of the model, the higher the complexity of the
objective function generated by that model. Among the models considered, the
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Table 3.5: The percentage of failures: P-algorithm, d “ 1, N “ 35 trials.

Assumed model Actual model

Wiener Exponential Gaussian
Wiener 5.6 26.0 25.8
Exponential 13.5 22.4 18.6
Gaussian 56.6 67.0 9.1

Table 3.6: The percentage of failures: Maximum expected improvement algorithm,
d “ 1, N “ 35 trials.

Assumed model Actual model

Wiener Exponential Gaussian
Wiener 6.9 28.4 24.3
Exponential 8.6 27.9 33.8
Gaussian 55.4 68.2 6.4

Wiener and Exponential models in the 1-dimensional case, and Exponential and
Spheric models in the 2-dimensional case, are the most complicated. This can
be seen in Figures 3.1 and 3.2, as the realizations of these models have a great
number of local minimizers.

3.5.4.1 The 1-dimensional case

As Tables 3.5 and 3.6 (Figure 3.3) show, in the 1-dimensional case the perform-
ance of both algorithms using various assumed objective function models is
similar and is therefore described here jointly. When algorithms are constructed

Table 3.7: The percentage of failures: P-algorithm, d “ 2, N “ 50 trials.

Assumed model Actual model

Exponential Spheric Stable Gneiting-2 Gneiting-4 Gaussian
Exponential 32.4 27.1 8.6 8.4 7.8 3.8
Spheric 28.7 23.9 7.4 9.9 12.6 7.3
Stable 43.0 36.8 21.2 25.6 40.5 33.6
Gneiting-2 47.2 43.9 16.3 19.6 32.0 21.1
Gneiting-4 55.8 54.3 32.7 22.5 20.7 10.6
Gaussian 52.7 46.4 27.2 21.2 13.6 6.6
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Figure 3.3: The percentage of cases when the global minimum was not found.
Top: Results with 1-dimensional models, N “ 35. Bottom: Results with 2-
dimensional models, N “ 50.
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Table 3.8: The percentage of failures: Maximum expected improvement algorithm,
d “ 2, N “ 50 trials.

Assumed model Actual model

Exponential Spheric Stable Gneiting-2 Gneiting-4 Gaussian
Exponential 47.9 50.3 52.1 52.7 54.5 51.5
Spheric 40.6 37.6 41.6 45.7 51.5 45.0
Stable 38.6 34.7 7.7 9.1 15.8 11.2
Gneiting-2 42.1 38.3 12.6 10.3 15.8 8.8
Gneiting-4 44.7 40.8 17.8 14.7 13.9 7.1
Gaussian 53.2 46.8 30.3 21.6 9.3 2.4

under the assumption of a complicated model, i. e. the Wiener or Exponential
model, the percentages of unsolved cases fall in the range 5´ 34%, regardless
of the actual model of the objective function. On the other hand, when the
algorithm assumes a simple objective function model, Gaussian in this case, the
percentage of unsolved cases is below 10%, when the assumption is true, and
above 50% otherwise, i. e. for the Wiener and Exponential actual models.

Thus, for a 1-dimensional objective function with unknown characteristics,
the Wiener and Exponential models could be recommended to assume in both
algorithms. The Gaussian model is unacceptable when the objective function
violates the model assumption and thus can not be used when no a priori
information on the problem is available.

3.5.4.2 The 2-dimensional case

The results given in Tables 3.7 and 3.8 (Figure 3.3) demonstrate that when the
objective functions correspond to the complicated actual models (Exponential
or Spheric), the percentage of unsolved cases is 23 ´ 56% for the P-algorithm,
and 34 ´ 54% for the Maximum expected improvement algorithm. This implies
that both algorithms find these functions hard to optimize irrespective of the
assumed model, even when the assumed model matches the actual model. The
best results are obtained using the P-algorithm with the Exponential or Spheric
assumed models.

When the algorithms are defined assuming a complicated objective function
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Table 3.9: Summary of the guidelines for the choice of the assumed model. Ab-
breviations P and MEI stand for, respectively, the P-algorithm and the Maximum
expected improvement algorithm.

Dimension Complexity of
the objective function

Guidelines

1 Unknown P/MEI + Wiener/Exponential

High P/MEI + Wiener/Exponential

Low P/MEI + Gauss

2 Unknown P + Exponential/Spheric
MEI + Stable

High P+ Exponential/Spheric

Low P/MEI + Gauss
MEI + Gneiting-2/Gneiting-4

model (Exponential or Spheric assumed models), the results differ. The percentage
of unsolved cases is 3´ 33% for the P-algorithm and 37´ 55% for the Maximum
expected improvement algorithm accross various actual models. Moreover, when
the assumption is false, i. e. the objective function is actually less complicated,
the percentage for the P-algorithm is 3 ´ 13%, while for the Maximum expected
improvement algorithm it is 41´ 55%. This means that the P-algorithm performs
considerably better assuming a complicated objective function, irrespective
of the actual model, while assuming such a model for the Maximum expected
improvement algorithm is not advisable in any case.

On the other hand, when in the definition of the algorithm one of the simple
models (Gneiting-2, Gneiting-4 or Gaussian) is assumed, and one of these models
is the actual model, the following percentages of unsolved cases result: 6´ 32%

for the P-algorithm, and 2´ 16% for the Maximum expected improvement algorithm,
so the latter performs better. It can thus be concluded that it is beneficial for both
algorithms to assume a simple model when the objective function is expected to
be simple as well. However, when no information on the objective function is
available, these models should not be assumed.

Finally, the results for the Stable model seem rather promising, as the percentage
of unsolved cases for the Maximum expected improvement algorithm is 9 ´ 39%,
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across various actual models. This suggests that the model is acceptable to be
used in the Maximum expected improvement algorithm, when no information on
the objective function is available.

Guidelines for the usage of the assumed models corresponding to the a pri-
ori information about the objective function complexity are summarized in
Table 3.9.

3.6 Chapter Summary and Conclusions

1. An experimental methodology is proposed with the view of supporting
the selection of an appropriate statistical model to be used for constructing
a global optimization algorithm.

2. When there is no a priori information about the objective function, it is
recommended to assume a complicated objective function model (Expo-
nential or Wiener) in the 1-dimensional versions of the P-algorithm and the
Maximum expected improvement algorithm. The same recommendation holds
in the 2-dimensional case for the P-algorithm (Exponential or Spheric mod-
els). Alternatively, the Maximum expected improvement algorithm can also be
used with the assumption of the Stable model of average complexity.

3. When the objective function is expected to have low short-range variability,
the assumption of the Gaussian model for both algorithms should be used
with similar results to be expected. Alternatively, the models Gneiting-2
and Gneiting-4 could be assumed for the Maximum expected improvement
algorithm in the 2-dimensional case.

4. An objective function with high short-range variability is going to be hard
to optimize irrespective of the assumed model. In the experiments, the
best results for the hard functions were obtained using the 1-dimensional
versions of both algorithms with Wiener or Exponential assumed models,
and the 2-dimensional version of the P-algorithm with the Exponential or
Spheric assumed models.

5. On the whole the P-algorithm constructed assuming the Exponential model
performs the best for a variety of univariate and bivariate objective func-
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tions. Simple objective functions can successfully be optimized by the
Maximum expected improvement algorithm, constructed using one of the
simple objective function models.
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Chapter 4

Extensions for Hyper-Rectangular
Decomposition-Based Statistical
Global Optimization

A global optimization algorithm, rooted in the statistical theory of global optim-
ization, is described in the first section of this chapter. The algorithm relies on a
hyper-rectangular decomposition of the feasible region that is iteratively refined
at each step by performing objective function evaluations at the vertices of the
newly formed hyper-rectangles. The algorithm has an established convergence
rate, however, its practically noticeable disadvantage is that it spends too many
objective function evaluations exploring the vicinity of the discovered promising
local minima before finding the true global minimum. Thus, to speed up the ap-
proximation of the global minimum in terms of the number of objective function
evaluations and obtain an algorithm comparable to other popular contemporary
algorithms, two heuristic extensions are introduced in the second and third
sections of this chapter. Each of the sections corresponding to the presented
algorithms includes a pseudo-code of the algorithm together with a description
and an illustrative example. The fourth section is devoted to numerical exper-
iments demonstrating the performance of the presented algorithms. The last
section states the conclusions.
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4.1. A Multivariate Statistical Global Optimization Algorithm

4.1 A Multivariate Statistical Global Optimization

Algorithm

4.1.1 Introduction

The problem of approximating the global minimum

f˚ “ min
xPA

fpxq, A “ r0, 1sd, d ě 2, (4.1)

of an objective function which is assumed to have partial derivatives up to
order 2 and a unique global minimizer x˚ in the interior of A is considered.
In this section a multivariate derivative-free global optimization algorithm
by Calvin [11] is described. The algorithm stems from the line of research
investigating the convergence properties of global optimization algorithms
based on statistical models [12, 13, 16, 18], and therefore has a theoretically
established asymptotic bound on the convergence rate. However, this thesis
focuses on its practical performance rather than theoretical properties, therefore
no in-depth presentation of the convergence properties is included.

The algorithm maintains a decomposition of the feasible region, composed
of hyper-rectangular subregions with known objective function values at the
vertices. A statistical criterion for selecting a hyper-rectangle to be divided is
used based on the previously computed objective function values. One hyper-
rectangle is selected and divided at each iteration. The algorithm is referred to
as Rect algorithm in the discussion that follows, the names of its different imple-
mentations corresponding to variations of computing the statistical criterion,
are introduced in Section 4.1.2.3.

Algorithm Rect is similar to the multivariate algorithm [16] based on a simplicial
partition of the feasible region, generated by the Delaunay triangulation of
the function evaluation locations. As opposed to the latter, the Rect algorithm
uses a hyper-rectangular decomposition of the feasible region. Moreover, the
convergence rate for an arbitrary dimension was established in [11], whereas
only a bivariate case was handled in [16].

The result on the convergence rate for the Rect algorithm is formulated in
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Theorem 1 of [11]. Abstracting away rather complex expressions, it states that
there is a number n0pfq such that for n ą n0pfq the residual error after n objective
function evaluations satisfies

∆n “ yon ´ f
˚
ď c1pf, dq expp´c2pf, dq

?
nq, (4.2)

where c2pf, dq decreases exponentially with dimension d. Although the con-
vergence rate (4.2) holds for a specific class of functions, as defined by the
assumptions on the problem, the algorithm itself converges to the global min-
imum for a broader class of functions, e. g. those that are continuous on r0, 1sd.

A disadvantage of the Rect algorithm is that the number of objective function
evaluations can become rather large, well before the established convergence
rate manifests itself.

4.1.2 Description

This section describes the operation of the Rect algorithm. Its pseudo-code is
formally presented in Algorithm 1.

In short, the algorithm creates a rectangular decomposition of the feasible region
and then updates it at each iteration. The update includes selection of a hyper-
rectangle according to a certain criterion, defined below, and its partitioning
into two equal parts that replace the original hyper-rectangle in the current
decomposition.

4.1.2.1 Notation

First of all, some relevant notation used in the definition of the algorithm is
introduced.

1. A “ r0, 1sd, the feasible region that is assumed to be a unit hyper-cube;

2. D, the current hyper-rectangular decomposition of the feasible region;

3. R “
śd´1

i“0 rai, bis, a hyper-rectangle;
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Algorithm 1 The pseudo-code of the Rect algorithm.
1: Set the following variables:

1. AÐ r0, 1sd, the feasible region;

2. D Ð tAu, the set, holding the hyper-rectangles of the currect decomposition
of the feasible region;

3. v Ð 1, the minimum hyper-rectangle volume.

2: Evaluate the objective function at the vertices of A and set the number of objective
function evaluations nÐ 2d.

3: while The stopping condition is not satisfied do
4: Determine the best hyper-rectangle: R˚ Ð maxRPD ηpRq.
5: Form two hyper-rectangles R˚j , j “ 1, 2, from the best hyper-rectangle R˚ as

follows. Suppose that R˚ “
śd´1
i“0 rai, bis and γ is the smallest index such that

bγ ´ aγ ě bi ´ ai,@i “ 0, . . . , d´ 1. Then

R˚1 Ð ra0, b0s ˆ ¨ ¨ ¨ ˆ raγ , paγ ` bγq{2s ¨ ¨ ¨ ˆ rad´1, bd´1s,

R˚2 Ð ra0, b0s ˆ ¨ ¨ ¨ ˆ rpaγ ` bγq{2, bγs ¨ ¨ ¨ ˆ rad´1, bd´1s.

6: Evaluate f at (at most) 2d´1 new locations sj , j “ 0, . . . , 2d´1 ´ 1:

sj “ psj0, s
j
1, . . . , paγ ` bγq{2, . . . , s

j
d´1q, where

sji Ð

#

ai, if pj div 2d´1´i mod 2q “ 0;

bi, otherwise.

7: Increment n by the number of new function evaluations in Step 6.
8: Update yon if a lower function value was found in Step 6.
9: D Ð DzR˚ Y tR˚1 , R

˚
2u.

10: if V pR˚q “ v then v Ð v{2.
11: end if
12: end while

4. pi “ ppi0, p
i
1, . . . , p

i
d´1q, i “ 0, . . . , 2d ´ 1, a vertex of a hyper-rectangle.

Vertices are ordered such that pi ă pj ùñ Dl : 0 ď l ď d´ 1, pik ď pjk, @k “

0, . . . , l and pil ă pjl ;

5. fi “ fppiq, i “ 0, . . . , 2d ´ 1, the corresponding objective function value at
the hyper-rectangle vertex;

6. vertspRq, the set of hyper-rectangle R vertices, i. e. vertspRq “ tpi : i “

0, . . . , 2d ´ 1u;

7. yon “ mini“1,...,n yi, the minimum objective function value found after n
function evaluations;
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8. L : r0, 1sd Ñ R, a function defined in the following way. In the interior of
some hyper-rectangle R, Lpxq coincides with the multi-linear interpolant
of the function values at the vertices of R; on the boundaries of hyper-
rectangles Lpxq is set equal to yon, i. e. the global minimum of Lpxq.

The multi-linear interpolant of the objective function values for an arbitrary
dimension d is defined for x “ px0, x1, . . . , xd´1q, xk P pak, bkq, ak “ p0

k, bk “

p2d´1
k , k “ 0, . . . , d´ 1, as follows

Lpxq “
2d´1
ÿ

i“0

fi

d´1
ź

k“0

|xk ´ p
2d´1´i
k |

bk ´ ak
. (4.3)

9. gpxq, a function defined as:

gpxq “

$

&

%

pλx logp1{xqq2{d, 0 ă x ď 1{2,

qd2{4, x “ 1
, where (4.4)

q “
3 ¨ 22{3e´1

2 logp2q
« 1.27, λ “

ˆ

qd2

4

˙d{2

. (4.5)

10. V pRq, the volume of hyper-rectangle R;

11. v “ minRPD V pRq, the minimum hyper-rectangle volume in the current
decomposition;

12. ηpRq, a statistically-justified criterion, assessing the potential of hyper-
rectangle R to contain the global minimizer:

ηpRq “

ż

R

ds

pLpsq ´ yon ` gpvqqd{2
. (4.6)

13. η̂pRq, a computationally simpler version of criterion (4.6), avoiding the
integration:

η̂pRq “
V pRq

pLpcq ´ yon ` gpvqqd{2
,

c “ pc0, c1, . . . , cd´1q, ck “ pak ` bkq{2, k “ 0, . . . , d´ 1. (4.7)

14. R˚ P D, a hyper-rectangle maximizing the statistical criterion (4.6) or (4.7),
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depending on the specific implementation, see Section 4.1.2.3.

4.1.2.2 Description of the Pseudo-Code

Algorithm 1 starts with basic initialization. First, the original domain of the
problem is scaled to a unit hyper-cube A “ r0, 1sd, and the objective function is
evaluated at its vertices. The hyper-rectangular decomposition of the feasible
region D is initialized with A itself, and the minimum hyper-rectangle volume v
is set to V pAq “ 1.

Further, the algorithm proceeds iteratively (Steps 3-12). At each iteration, a
criterion (which could either be (4.6), or (4.7) depending on the implementation,
see Section 4.1.2.3) is evaluated for each of the hyper-rectangles R P D (Step 3)
and the one with the largest value is selected, denoting it R˚. The best hyper-
rectangle is divided into two equal parts in Step 5, cutting the edges along the
longest of its dimensions γ in half. The objective function is then evaluated at the
no more than 2d´1cutting points, which are defined in Step 6, since it is assumed
that a history of already performed evaluations is maintained. Accordingly,
the number of objective function evaluations n is incremented and the current
record yon is updated, if necessary. The new hyper-rectangles replace R˚ in D.
The minimum volume v is updated, if the smallest hyper-rectangle has just been
divided.

4.1.2.3 Implementations

At the core of the Rect algorithm is the computation of the hyper-rectangle selec-
tion criterion (4.6). It reduces to the numerical integration over a hyper-rectangle.
Since this aspect is highly implementation-specific, the implementation versions
differring in a strategy used to compute this criterion are described here. In the
two-dimensional case, the integral can be computed combining analytical and
numerical techniques. Using the notation and ordering of the hyper-rectangle
vertices, introduced in Section 4.1.2.1, in the 2-dimensional case the general
expression (4.3) reduces to the bi-linear interpolant of the objective function
value at an arbitrary point x “ px0, x1q, xk P pak, bkq, ak “ p0

k, bk “ p3
k, k “ 0, 1, of
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the form

Lpxq “ Lpx0, x1q “ Apx1qx0 `Bpx1q,

Apx1q “

x1´a1
b1´a1

pf0 ´ f1 ´ f2 ` f3q ` pf2 ´ f0q

b0 ´ a0

,

Bpx1q “

x1´a1
b1´a1

p´f0p
3
0 ` f1p

2
0 ` f2p

1
0 ´ f3p

0
0q ` pf0p

3
0 ´ f2p

1
0q

b0 ´ a0

. (4.8)

Then

ηpRq “

ż

R

dx
Lpxq ´ yon ` gpvq

“

ż b1

a1

ż b0

a0

dx0

Lpx0, x1q ´ yon ` gpvq
dx1 “

ż b1

a1

ż b0

a0

dx0

Apx1qx0 ` Cpx1q
dx1 “

ż b1

a1

upx1qdx1, (4.9)

where

upx1q “

$

&

%

1
Apx1q

plnpApx1qb0 ` Cpx1qq ´ lnpApx1qa0 ` Cpx1qqq, if Apx1q ‰ 0,

1
Cpx1q

pb0 ´ a0q, if Apx1q “ 0,

Cpx1q “ Bpx1q ´ yon ` gpvq. (4.10)

Note that the function upx1q is continuous at the point x̂1 “
f0´f2

f0´f1´f2`f3
, x̂1 P

ra1, b1s, that gives Apx̂1q “ 0.

As a result, in the 2-dimensional case we can compute ηpRq as a 1-dimensional
integral using equations (4.8)-(4.10). The 1-dimensional integral is computed
numerically using the GNU Scientific Library [4] routine gsl_integration_cquad
requiring a relative error smaller than 10´7. We call the resulting implementation
Rect-A.

For comparison, we also include a version of ηpRq that is computed as an integral
over a hyper-rectangleR using the classical Monte Carlo method (GNU Scientific
Library routine gsl_monte_plain_integrate) with M “ 10000 evaluations of the
2-dimensional integrand. This implementation is referred to as Rect-MC below.
It is also possible to extend this implementation for an arbitrary dimension.
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Figure 4.1: The level plot and the surface of a 2-dimensional test function
generated by the GKLS generator (function #27 from class #2, see Section 4.4.2
for the description of the testing function classes).

Finally, the simplified version η̂pRq of the criterion for dimension d, computed
according to Equation (4.7), results in the implementation Rect-1. This imple-
mentation is the fastest for any dimension.

All of the above presented versions of the algorithm have been implemented in
the C++ programming language as part of this thesis. In all implementations
the function evaluation database is employed, so that the objective is never
evaluated twice at the same location.

4.1.3 Illustrated Example

This section presents an illustrated example of the operation of the Rect al-
gorithm.

Figure 4.1 shows the level plot and the surface of a 2-dimensional test function,
generated by the GKLS function generator [29], with the domain scaled to the
unit square A “ r0, 1s2. The generator itself and the testing function classes used
in this work are introduced more thoroughly in Section 4.4.2. It now suffices
to say that this function is obtained by defining a convex quadratic function,
distorted by polynomials to produce local minima.
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Figure 4.2: An example of the operation of the Rect algorithm with a 2-
dimensional test function, generated by the GKLS test function generator (func-
tion #27 from class #2, see Section 4.2.3 for description and Section 4.4.2 for the
introduction to the generator test function classes).
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This test function has 10 local minimizers, including the global one, located
at x˚ “ p0.4464, 0.5711q (in the scaled domain) with the value fpx˚q “ ´1.
The local minimizers are marked as follows: the black diamond denotes the
global minimizer, the black triangle denotes the vertex of the convex quadratic
function and black dots mark other local minimizers. The performance of two
other algorithms discussed in the persent chapter will be illustrated on the same
test function in Sections 4.2.3 and 4.3.3.

The operation of the Rect algorithm is illustrated in Figure 4.2. The local min-
imizers are marked analogously to the Figure 4.1. The function evaluations
are the vertices of the displayed rectangles. The rectangular decompositions of
the feasible region produced after n “ 100, 497, 1000, 2000, 3000, 5000 objective
function evaluations are shown. The choice n “ 497 corresponds to the mo-
ment when the algorithm termination condition (4.16), used in the experiments
in Section 4.4.2, is met. The figure shows that the rectangular decomposition
is gradually refined, forming marked agglomerations of function evaluations
around the discovered local minimizers.

4.2 Globally-Biased Statistical Global Optimization

Algorithm

4.2.1 Introduction

In the ideal case, the Rect algorithm is supposed to balance the global and
local search efficiently, so that the promising regions could be spotted quickly,
ensuring at the same time a rapid convergence towards the global minimum.
Such an overly optimistic expectation would mean that the global algorithm is
at the same time an efficient local optimizer. However, that is not the case, and
for difficult multi-modal problems an excessively local behavior occurs. More
precisely, the algorithm concentrates its efforts on refining the hyper-rectangular
decomposition around discovered local minimizers, neglecting other areas that
might contain deeper local minima. The discovery of the global minimum is
thus delayed.
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Other decomposition-based methods, predominantly in the Lipschitz optim-
ization context, are also known to suffer from related problems. For example,
DIRECT [48] is admitted to quickly discover promising regions and obtain a
rough approximation to the global minimum, however, further descrease in
residual error of the global minimum is slow. One of the possible reasons is, as
in the case of the Rect algorithm, an excessive refinement of the hyper-rectangles
around the suboptimal local minimizers. Similar problems are also present
in the methods based on simplicial decomposition of the feasible region, e. g.
DISIMPL-C and DISIMPL-V [68]. Due to structural similarity, these methods
could be jointly referred to as DIRECT-type methods.

The ramifications of the above-stated problem include a large number of object-
ive function evaluations, which might be expensive, and a potential exhaustion
of the available computatational resources such as memory before a sufficiently
accurate estimate of the global minimum is obtained.

Alternative solutions to this problem have been proposed in the literature.

A two-phase approach first introduced in [78] in the context of global optim-
ization of expensive Lipschitz continuous functions using hyper-rectangular
decompositions of the feasible region was generalized to the case of simplicial
decompositions in [69]. The approach targets multivariate multi-extremal black-
box problems. Balancing the explicitly defined local and global search phases is
at the core of the approach. The algorithms execute the local phase refining the
current best known function value until no significant improvement has been
obtained for some time. At this point the explored neighborhood contains only
small subregions, and the large ones are most likely located at a distance. Then
a switch to the global phase is triggered to explore large subregions, possibly
containing better local minimizers. Thus excessive refinement is prevented, and
resources are saved. The phases are essentially defined by filtering the sizes of
the subregions eligible for partitioning.

Likewise, bi-level (and multi-level) approaches were introduced in [57, 58],
driving inspiration from the multi-grid algorithms for solving linear systems of
discretized partial differential equations. The goal is to achieve solutions with a
high degree of accuracy at a reasonable computational cost. A decomposition-
based global optimization algorithm (e.g. DIRECT) is applied to a problem of
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4.2. Globally-Biased Statistical Global Optimization Algorithm

the same structure on a set of different scales. Namely, on the coarsest scale, the
algorithm is allowed to partition the original feasible region for a number of
iterations. Then a fixed percentage of the produced hyper-rectangles is selected
to be processed by the same algorithm on a finer scale until the finest scale
is reached, followed by propagation of the results back to the coarsest scale.
The greatest advantage over the original algorithm is achieved when a high
precision of approximation is requested.

A set of DIRECT-based methods taking advantage of local optimization al-
gorithm runs is developed in [60, 61]. A sufficiently accurate approximation
of the global minimum is chosen as a primary goal, to be pursued at the ex-
pense of all the available computer memory and without regard to the number
of required objective function evaluations. The rationale behind the resulting
methods is exploiting the ability of DIRECT to detect the promising regions
and compensating for the slow convergence towards the global minimum. A
number of the suggested methods is derived from two major ideas. First, a
local optimization algorithm is applied using the centroids of the potentially
optimal hyper-rectangles as starting points at every iteration of DIRECT. Second,
the problem is repeatedly solved after a piece-wise linear transformation has
been applied to the feasible region, centering it on one of the discovered prom-
ising points, to benefit from obtaining a possibly different decomposition of the
feasible region. The first modification is applied by varying the local optim-
ization procedure, i. e. a non-monotone Newton method used in DIRMIN, a
derivative-free optimizer in DFO-DIRMIN and an economical management of a
pool of local optimization executions is utilized in BDF-DIRMIN. The second
modification encloses one of the modified versions of DIRECT, by repeatedly
launching it on a transformed problem. This results in algorithms DIRMIN-TL,
DFO-DIRMIN-TL and BDF-DIRMIN-TL, respectively. The proposed algorithms
are very expensive from the point of view of the number of function evaluations,
e. g. the number of local searches might be on the order of several thousand in
the "enclosed" version of the algorithm.

Driving the inspiration from [69, 78], an extension to the Rect algorithm address-
ing the excessive local refinement problem is introduced below. The resulting
algorithm, referred to as GB in the discussion that follows, is an adaptation of a
two-phase approach to the context of hyper-rectangular decomposition-based
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stastistical global optimization.

4.2.2 Description

The present section describes the GB algorithm, the steps of which are given in
Algorithm 2.

Algorithm 2 The pseudo-code of the GB algorithm.
1: Initialization.
2: phaseÐ STANDARD.
3: while the stopping condition is not satisfied do
4: Select and divide hyper-rectangle(s).
5: if phase “ STANDARD then Ź Entering the STANDARD phase.
6: if condition (4.12) is satisfied then
7: Reset the phase-start record: sbest Ð yon.
8: else if v ă vsmall then
9: phaseÐ GLOBAL.

10: Reset the phase-start record: sbest Ð yon.
11: D̄ Ð tR P D : V pRq ě vlargeu.
12: Initialize the GLOBAL phase iterations counter: iglob Ð 0.
13: end if
14: else Ź Entering the GLOBAL phase.
15: if condition (4.12) is satisfied then
16: phaseÐ STANDARD.
17: Reset the phase-start record: sbest Ð yon.
18: D̄ Ð tR P D : V pRq ě vbestu.
19: else
20: iglob Ð iglob ` 1.
21: if iglob mod iperiod “ 0 then Ź Perform one SECURITY iteration.
22: D̄ Ð tR P D : V pRq ě vbestu.
23: Select and divide hyper-rectangle(s).
24: if condition (4.12) is satisfied then
25: phaseÐ STANDARD.
26: Reset the phase-start record: sbest Ð yon.
27: D̄ Ð tR P D : V pRq ě vbestu.
28: else
29: D̄ Ð tR P D : V pRq ě vlargeu.
30: end if
31: end if
32: end if
33: end if
34: end while
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4.2.2.1 Notation

Let us start with the following notation that is necessary to describe the operation
of the algorithm.

1. A “ r0, 1sd, the feasible region;

2. D̄ Ă D, the subset of the current hyper-rectangular decomposition of the
feasible region, holding the active hyper-rectangles, i. e. those eligible for
partitioning;

3. sbest, the phase-start record objective function value;

4. v, the volume of the smallest hyper-rectangle in D̄;

5. vsmall, the volume threshold parameter, used as a determiner that hyper-
rectangles small enough exist for the GLOBAL phase of the algorithm to
be triggered;

6. vmax, the volume of the largest hyper-rectangle in D̄;

7. vbest, the volume of the largest hyper-rectangle with a value yon at one of
its vertices;

8. vlarge, the volume threshold, satisfying vbest ď vlarge ď vmax:

vlarge “ min
!

vmax,
vmax
2τ

)

, τ “ 0.4

ˆ

log2

vmax
vbest

` 1

˙

. (4.11)

9. Sufficient decrease condition:

yon ď sbest ´ 0.01|sbest|. (4.12)

The same condition is also used in [69] to determine the moment of switch-
ing between the phases.

10. iglob, the GLOBAL phase iterations counter;

11. iperiod, the algorithm parameter, specifying that every iperiod GLOBAL

phase iterations one SECURITY iteration is performed.
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4.2.2.2 Description of the Pseudo-Code

The algorithm starts with a basic initialization at Step 1, consisting of the follow-
ing actions. First, as in the case of the Rect algorithm, the original domain of
the problem is scaled to a unit hyper-cube A “ r0, 1sd and the objective function
is evaluated at its vertices. A set of active hyper-rectangles D̄ is initialized to
contain A, i. e. D̄ Ð tAu. Volumes v, vmax and vbest are all initialized to V pAq “ 1.

The algorithm is enclosed in a while loop (Step 3) that checks the stopping
condition at the beginning of each iteration. Every iteration of the algorithm
is performed in either of the two phases, namely STANDARD and GLOBAL,
starting from the STANDARD. The purpose of the STANDARD phase is to
explore all but the smallest hyper-rectangles, i. e. those satisfying V pRq ă vbest

are omitted from processing. On the other hand, the search during theGLOBAL
phase is biased towards the largest hyper-rectangles, i. e. only those satisfying
vlarge ď V pRq ď vmax are considered.

Each iteration of the algorithm starts by selecting and dividing one or more
hyper-rectangles (Step 4). At the beginning of each phase the sufficient decrease
condition (4.12) is checked. The intuition behind the fact that it is satisfied means
that the algorithm found a potential region of attraction of some new local
minimizer, and as a result, the vicinity of xon : fpxonq “ yon should be explored
more thoroughly in the course of the following iteration. This leads to the
following hyper-rectangle selection procedure. If condition (4.12) was satisfied
in the previous iteration, 2d hyper-rectangles with lowest center distances to xon
are selected. Otherwise, a single hyper-rectangle with the highest simplified
score of the Rect algorithm η̂ (4.7) is selected. The same division method as in the
Rect algorithm (cutting the edges along the longest hyper-rectangle dimension in
half, see Step 5 of Algorithm 1), is used to divide the selected hyper-rectangles.

Now let us examine the specifics of each phase in detail. If the sufficient decrease
condition (4.12) is satisfied in the STANDARD phase (Step 6), sbest is updated,
and the next iteration divides 2d hyper-rectangles. Otherwise, the algorithm
operates identically to the Rect-1 version of the Rect algorithm (see Section 4.1.2.3)
until very small hyper-rectangles are generated, i. e. the condition v ă vsmall

is satisfied (Step 8). This is an indication that enough effort has been spent
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exploring the vicinity of a certain local minimizer and it is time to globalize the
search in order to spot a better one. At this point a switch to the GLOBAL phase
occurs, ensuring the necessary preconditions (Steps 9-12), i. e. the phase-start
record sbest is updated, the active hyper-rectangles set D̄ is initialized to contain
only large hyper-rectangles and the global iterations counter iglob is reset.

The GLOBAL phase considers a subset of the feasible region, covered by the
relatively large hyper-rectangles, as determined at the beginning of the phase.
They are gradually partitioned until the sufficient decrease condition (4.12) has
been satisfied (Step 15). At this point a switch to the STANDARD phase occurs.
The phase-start record sbest is updated, and all but the smallest hyper-rectangles
become eligible for partitioning again so that the vicinity of a new potentially
better local minimizer could be explored appropriately.

On the other hand, in case the condition (4.12) is not satisfied in iperiod iterations,
a better local minimizer might have been missed by not including a hyper-
rectangle containing it in D̄. It is also possible that the algorithm once again
generated many small hyper-rectangles, making the search too local. To guard
against such situations, every iperiod GLOBAL phase iterations a SECURITY
iteration is included (Step 21). Namely, a single hyper-rectangle from a set of all
but the smallest hyper-rectangles is divided (Steps 22-23). In case the condition
(4.12) is satisfied (Step 24), a switch to the STANDARD phase is performed.
Otherwise, the smallest hyper-rectangles are filtered away in preparation for the
next GLOBAL phase iteration (Step 29).

4.2.3 Illustrated Example

This section presents an illustrated example of the operation of the GB algorithm
using the test function introduced in Section 4.1.3.

The operation of the GB algorithm is illustrated in Figure 4.3. The local minim-
izers are marked analogously to those in Figure 4.1. The function evaluations are
the vertices of the displayed rectangles. The rectangles excluded from further
processing are shaded in grey, while the rectangles about to be divided are
shaded in red.
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Figure 4.3: An example of the operation of the GB algorithm with a 2-
dimensional test function, generated by the GKLS test function generator (func-
tion #27 from class #2, see Section 4.2.3 for description and Section 4.4.2 for the
introduction to the generator test function classes).
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The top left subfigure ("Enter GLOBAL, n “ 195") shows the rectangular de-
composition of the feasible region when the GLOBAL phase is entered for the
first time. A high density of function evaluations in two subregions, corres-
ponding to certain local minimizers, is visible. Since the sufficient decrease was
not achieved and the smallest rectangle volume satisfied v ă vsmall, no further
significant progress was possible in these well-explored regions. These regions
are successfully excluded to boost the importance of the larger rectangles.

The top right subfigure ("Before SECURITY , n “ 217") shows the moment of
interrupting the GLOBAL phase to perform the SECURITY iteration for the
first time. There are no excluded rectangles, as no rectangles are filtered away
in Step 22 of the algorithm. Further, since no sufficient decrease happened dur-
ing the SECURITY iteration, the algorithm returned to the GLOBAL phase,
as shown in the middle left subfigure ("Continue GLOBAL, n “ 218"). Ana-
logously, the SECURITY iteration is performed a couple of times more by
the algorithm, with subfigures "Before SECURITY , n “ 259" and "Continue
GLOBAL, n “ 260" illustrating the last such time before algorithm termination
condition (4.16) was met. Finally, an objective function evaluation satisfying
the sufficient decrease condition is found by the algorithm operating in the
GLOBAL phase and a transition to the STANDARD phase is made (bottom
right subfigure, "Enter STANDARD, n “ 277"). As the figure shows, that
was the basin of the global minimizer. Algorithm termination according to the
condition (4.16) happened after n “ 277 objective function evaluations.

4.3 Statistical Global Optimization Algorithm with

Clustering-Based Local Refinement

4.3.1 Introduction

The same problem of irrationally dense distribution of the function evaluation
locations in the vicinity of the currently best point produced by the Rect al-
gorithm, as discussed in detail in Section 4.2.1, is addressed in the present
section.
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However, a different line of reasoning is pursued this time. The points where the
function values are computed by the Rect global search algorithm tend to cluster
in the promising regions, potentially containing the global minimizer. However,
it might take a significant number of further function evaluations to explore
those regions thoroughly enough in terms of the statistical model. Assuming that
a basin of a local minimum is found, the corresponding minimizer can be found
with the prescribed termination condition faster by a local search algorithm
than continuing the global search. The cluster analysis of the produced hyper-
rectangles might reveal the areas worth considering for local refinement using
an external local optimizer; moreover, the identified regions might afterwards
be masked away, thus directing the global search towards less explored areas.

A hybrid algorithm is presented below, combining the global optimization
algorithm Rect with the clustering algorithm in order to identify the sub-regions
potentially containing the global minimum, and a local optimization algorithm.
The resuling hybrid algorithm is referred to as Cluster in the discussion that
follows.

4.3.2 Description

The present section describes the Cluster algorithm, the steps of which are given
in Algorithm 3. The algorithm operates by repeatedly switching between two
modes of operation: the global search according to the Rect-1 algorithm (see
Section 4.1.2) and the local refinement. The description of the pseudo-code of
the algorithm is given below, reflecting the structure of the algorithm. Since the
global search part was covered in detail in Section 4.1.2, the focus is mainly on
the notation and steps pertaining to the local refinement part of the algorithm.

Remark 4.3.1. The Cluster algorithm is coincident with the Rect-1 algorithm, if
the clustering phase is never entered, namely, when the stopping condition is
triggered before the clustering phase. ˝
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Algorithm 3 The pseudo-code of the Cluster algorithm.
1: Evaluate fpxq at the vertices of A “ r0, 1sd, nÐ 2d, D Ð tAu.
2: while The stopping condition is not satisfied do
3: Determine the best hyper-rectangle: R˚ Ð maxRPD η̂pRq.
4: Replace R˚ P D by two hyper-rectangles resulting from dividing R˚.
5: Increase n by the number of new function evaluations made.
6: if v ă vsmallpdq then
7: Cluster the hyper-rectangles in D, represented by their center loca-

tions.
8: Run the local optimization algorithm on the cluster containing the

hyper-rectangle with the best (lowest) value.
9: Eliminate part of the hyper-rectangles from further search.

10: end if
11: end while

4.3.2.1 Notation

Some additional notation relevant to the local refinement part of the Cluster
algorithm is introduced. For the notation relating to the global search part of
the algorithm, please, refer to Section 4.1.2.

1. vsmallpdq, a threshold on the minimum hyper-rectangle volume used to
trigger the local refinement phase;

2. P , the input point set to the clustering algorithm;

3. |P |, the number of points P contains;

4. C, the current set of clusters produced by the clustering algorithm;

5. c P C, a cluster;

6. m, the number of representative points per cluster;

7. reppcq, the set of representative points of cluster c;

8. µc, the mean of cluster c;

9. α, the shrinking factor for the representative points;

10. k, the number of clusters to be formed;
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11. ωR “
´

a0`b0
2
, . . . , ad´1`bd´1

2

¯

, the center of the hyper-rectangle R P D,R “
śd´1

i“0 rai, bis;

12. vertspcq “
Ť

RPc vertspRq, vertices of the hyper-rectangles in cluster c;

13. BBc, the bounding box of the hyper-rectangles in cluster c;

14. δc, the length of the diagonal of BBc;

15. ∆, a precision parameter;

16. Nmax
local , a budget of function evaluations per local optimization run.

4.3.2.2 Global Search

The algorithm is initialized and operates identically to the Rect algorithm im-
plementation Rect-1, as described in Section 4.1.2. In short, a hyper-rectangular
decomposition of the feasible region is refined at each iteration of the algorithm
(Steps 3-5) until a small enough hyper-rectangle is generated, satisfying the
condition v ă vsmall (Step 6).

4.3.2.3 Local Refinement

The appropriate moment to enter the local refinement phase is determined
automatically. Namely, each time the volume v of the smallest hyper-rectangle
in the current decomposition D falls below a threshold vsmallpdq, depending
on the dimension, it is assumed that the global search discovered a basin of a
certain local minimizer. As a result, a clustering algorithm is now likely to form
a cluster in this region.

The threshold vsmallpdqwas set according to the following argument. First, the
value vsmallp2q “ 2´15 was fixed. Then, assuming that vsmallp2q is the volume of
a 2-dimensional hyper-cube with a side length

a

vsmallp2q, vsmallpdqwas set to be
equal to the volume of a d-dimensional hyper-cube with the same side length.
Namely,
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vsmallpdq “ vsmallp2q
d{2. (4.13)

The local refinement phase consists of running a clustering algorithm (Step 7),
selecting the best cluster and performing local optimization over it (Step 8) and
removing the explored area from further consideration by the global search
(Step 9). These steps are discussed in order.

Clustering. The local refinement phase starts by clustering the hyper-rectangles
in the current decomposition D. More precisely, for each hyper-rectangle R P D,
its center ωR point is included in the input points set of the clustering algorithm.
Thus a direct correspondence between the clustered points and hyper-rectangles
exists.

A hierarchical clustering algorithm CURE [33] is employed. It has attractive
features, including the possibility to form clusters of arbitrary shape, robustness
in the presence of outliers and usage of only a subset of the original point set to
produce clusters. The latter feature could be applied to the problems of higher
dimensionality, when generally more points are generated by the global search
before the clustering starts, and the clustering algorithm takes more time to
process them. However, the current implementation produced as part of this
thesis has not yet taken advantage of this possibility.

Since it is characteristic of the hierarchical clustering approach to initially treat all
input points as separate clusters which are merged starting from those closest to
each other, the areas where function evaluations are densely positioned naturally
generate large clusters quickly. As a result, it is possible to stop clustering when
some large clusters appear, which happens far sooner than all the points in the
input set have been merged at least with one other cluster, and interpret them
as local minima neighborhoods. This is the reason why hierarchical clustering
was chosen over the divisive clustering.

The CURE algorithm operates as follows. Initially, the points in the input set
P are treated as separate clusters C “ tx : x P P u. Each cluster c P C is
represented by a collection of m (or less for smaller clusters) representative
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points reppcq, obtained by shrinking the well-scattered points of the cluster
towards its mean µc by a factor α P r0, 1s. Specifically, a representative point
q P reppcq is obtained as q “ q0 ` αpµc ´ q0q, where q0 is one of the cluster
points positioned relatively far from the rest of the points. This mechanism
allows for mitigating the effect of the outliers. The inter-cluster distance is
defined in terms of the representative points. Namely, for clusters c and ĉ the
inter-cluster distance is distpc, ĉq “ minpPreppcq,qPreppĉq }p´ q}2, where } ¨ }2 is the
Euclidean norm.

Distance to the other closest cluster is used to arrange all clusters in the heap
data structure. At each step, the pair with the smallest inter-cluster distance is
merged until only k clusters remain. The resulting merged cluster combines the
points of its constituent clusters, while the representative points and its closest
cluster are redetermined.

The values for the algorithm parameters were chosen as follows. Under the
assumption that the neighborhoods of the minimizers are circular, the number
of representative points per cluster was m “ 1, and the cluster was represented
by its mean location resulting from α “ 1. Choosing the number of clusters
is complicated, the main goal is to keep the clusters dense, as well as avoid to
prematurely stop merging the sub-clusters. The choice k “ |P |{10, where | ¨ |
denotes the number of elements in a set, seemed satisfactory for the experiments
performed.

The intuition behind entering the clustering phase is that the global search
spotted a new local minimizer and started converging towards it. Moreover,
it is assumed that this minimizer is the best point found in the subset of the
feasible region, covered by the hyper-rectangles in D, i. e. a subset not excluded
in the previous executions of the local refinement phase. It is assumed that the
vicinity of such a minimizer contains a great number of small hyper-rectangles,
which the clustering algorithm combines into a prominent cluster. Moreover, the
majority of the clusters formed are meaningless, as they appear in the regions
where the function evaluation locations are not densely positioned and contain
small numbers of hyper-rectangles. As a result, the best cluster is selected to be
processesd further, while the rest are ignored. More precisely, to determine the
best cluster, let a set of vertices of the hyper-rectangles in cluster c be denoted
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vertspcq “ YRPcvertspRq. Then the best cluster is characterized by the lowest
value of expression minxPvertspcq fpxq.

Local search. The best cluster is further explored using a local derivative-free
optimization algorithm by Hooke and Jeeves [37, 50], starting from the cluster
vertex with the smallest objective function value, i. e. arg minxPvertspcq fpxq. The
algorithm performs the search over a set of decreasing scales hi, taking probes in
a set of directions, parallel to the coordinate axes, trying to find an improvement
over the base point. The improvement results in the base point change, otherwise
the scale is decreased.

It is important to confine the local search to a box, corresponding to the bound-
aries of the cluster. This way the search does not deviate from the starting
point unpredictably and is likely to stay within the attraction region of the
local minimizer that generated the cluster of the global search points in the first
place. This helps to ensure that removing the hyper-rectangles spanned by the
local search steps does not remove attraction regions of other local minimizers,
possibly, the global one. The bound constraints are easily incorporated in the
local search procedure by disallowing objective function evaluations outside the
bounded region.

The bound constraints for the search inside the cluster c coincide with the
bounding box of the hyper-rectangles of the cluster:

BBc “

d´1
ź

i“0

r min
pPvertspcq

pi, max
pPvertspcq

pis. (4.14)

Let us denote the diagonal of BBc as δc. Then the search scales are set to hj “ 1
2j

,
j “ tlog1{2 0.2δcu, . . . , rlog1{2 ∆s, where ∆ is a parameter corresponding to the
required precision. This way the first step size is not greater than 0.5 and the
solution is refined up to the required precision. The local search stops when
no more improvement over the remaining scales is achieved or the budget of
function evaluations N local

max “ 1000 is exhausted. All function evaluations per-
formed at this stage are stored separately from those of the global optimization
algorithm, corresponding to the vertices of hyper-rectangles.
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Figure 4.4: An example of the operation of the Cluster algorithm with a 2-
dimensional test function, generated by the GKLS test function generator (func-
tion #27 from class #2, see Section 4.3.3 for description and Section 4.4.2 for the
introduction to the generator test function classes).

Excluding explored regions. After the local optimization was performed on
the cluster, the region might be considered well-explored and removed from
further consideration by the global search.

A hyper-sphere with the radius equal to 0.2δc, centered at the best point found
by the local search over the cluster, is used to determine the hyper-rectangles
that need to be removed from D. The hyper-rectangles that have all vertices in
this hyper-sphere are removed. The global search continues with the reduced
set of hyper-rectangles.

The smallest hyper-rectangles are usually among the removed hyper-rectangles,
therefore v increases and the further search becomes more global.

4.3.3 Illustrated Example

This section presents an illustrated example of the operation of the Cluster
algorithm using the test function introduced in Section 4.1.3.

The operation of the Cluster algorithm is illustrated in Figure 4.4. The local
minimizers are marked analogously to the Figure 4.1. The function evaluations
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produced by the global search part of the algorithm are the vertices of the
displayed rectangles.

For this objective function the local refinement phase was performed once
before the stopping condition (4.16) was met, namely, after n “ 188 objective
function evaluations produced by the global search. The figure corresponds
to the moment when a new smallest rectangle was generated, having the area
v ă vsmallpdq “ 2´15, triggering the local refinement phase.

The clustering algorithm produced t|D|{10u hyper-rectangle clusters, out of
which a single cluster containing the rectangle with the lowest value was se-
lected for further processing. The rectangles of this cluster are shaded in light
blue. The representative point of the cluster is denoted by a square marker.
It is evident that the cluster corresponds to the vicinity of a local minimizer.
Moreover, the bounding box of the cluster rectangles BBc, used to restrict the
local optimization algorithm, is shown. The steps taken by the local optimization
algorithm exploring this cluster are denoted as small black dots. A sphere with
the radius 0.2δc centered at the best point found by the local search is displayed.
All rectangles that are fully enclosed by this sphere are colored in gray and
removed from further processing. The rest of the rectangles constitute the set eli-
gible for partitioning by the global search, that continues until either a stopping
condition is satisfied or a small enough rectangle for the local refinement phase
to be entered again is generated. The stopping condition (4.16) was satisfied in
n “ 333 (270 global and 63 local) objective function evaluations.

4.4 Numerical Experiments

This section presents the numerical experiments demonstrating and comparing
the performance of the algorithms described in this chapter. Namely, differ-
ent implementations of the Rect algorithm (Rect-1, Rect-A and Rect-MC) are
compared as well as the algorithms derived from the Rect-1 version of the Rect
algorithm, i. e. the GB and Cluster. Additionally, some well-known algorithms
of similar purpose are included for comparison. The parameter settings used
for various algorithms are given in Table 4.1.
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Table 4.1: Parameter settings of the algorithms.

Algorithm Parameter Value

Rect-1 - -
Rect-A Relative integration error 10´7

Rect-MC Number of evaluations of the
d-dimensional integrand

104, if d “ 2

105, if d “ 3
GB Volume threshold, vsmall 10´4, if d “ 2

10´6, if d “ 3
Period of repeating the SECURITY iteration,
iperiod

20

Cluster
Simpl[16] - -
DIRECT[1] Jones factor, ε 10´4

Maximum number of iterations 106

Maximum number of hyper-rectangle divi-
sions

104

Sobol[86] - -

The algorithms of this chapter have been implemented in C++ as part of this
thesis. In all implementations the function evaluations database - a nested
collection of self-balancing AVL binary trees [52] - is employed, so that the
objective is never evaluated twice at the same location.

Experiments with two different test suites are presented, namely the 2- and
3-dimensional test suite from [34] (see Section 4.4.1) and a test suite produced
by the GKLS generator [2, 29] including test functions up to the 4-th dimension
(see Section 4.4.2).

4.4.1 Experiments with the 2- and 3-dimensional Test Suite

Experimental Setup. The testing functions from [34] used in numerous papers
on Lipschitz optimization algorithms and defined in dimensions 2 and 3 were
minimized in the first part of the experimental performance demonstration.

As a performance metric, the residual error on a logarithmic scale, computed
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after n objective function evaluatios, was used:

δn “ ´ log10pyon ´ f
˚
q, (4.15)

where yon “ mini“1,...,n yi and f˚ is the global minimum value. Higher values of
δn imply higher precision achieved.

The performance metric (4.15) can reasonably be applied to global optimization
algorithms that, in theory, return to the vicinity of the global minimizer an
infinite number of times. Since the global search part of the hybrid Cluster
algorithm is not allowed to explore the local minimizers to an infinite precision,
and the local search precision is parametrically controlled, the results according
to metric (4.15) could hardly be properly interpreted, and therefore Cluster is
not included in the comparison here.

In addition to the algorithms described in the present chapter, this subsection
covers the results of two sequential global optimization algorithms intended for
solving problems with similar formulation and one passive global optimization
algorithm.

First, a recent algorithm [16], based on the Delaunay triangulation of the optimiz-
ation region and referred to as Simpl in the discussion that follows, was included
for comparison. The reason for choosing this algorithm is that both algorithms
Rect and Simpl stem from the statistical models-based approach to global op-
timization; however, there are reasons to expect that the Simpl algorithm might
be more efficient. This is because the interior of a hyper-rectangle is relatively
worse represented by the information at its vertices, as compared to a simplex,
and a single Rect algorithm iteration takes at most 2d´1 new function evaluations,
as compared to only one in algorithm Simpl. The experimentation might show
if these properties contribute to any noticeable performance difference. The
Simpl algorithm results for the 2-dimensional case in Table 4.3 were copied from
Table 1 of the original source, while the results for the 3-dimensional case in
Table 4.5 were obtained using a C++ implementation produced as part of this
thesis and using the 3-dimensional Delaunay triangulation code from the CGAL
library [3].

The second sequential global optimization algorithm included is the well-known
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Table 4.2: Comparison of different implementations of the Rect algorithm using
the 2-dimensional test suite from [34]. Optimization stops after a predefined
number of function evaluations Nmax.

Rect-1 Rect-A Rect-MC
Nmax Nmax Nmax

f 1000 3000 1000 3000 1000 3000

1 5.30 5.80 5.80 6.84 5.80 6.84
2 6.93 6.93 6.93 11.00 6.93 11.00
3 13.80 14.30 11.88 11.88 12.91 14.30
3.1 14.16 14.16 11.88 11.88 13.12 14.30
3.2 14.16 14.16 11.88 11.88 13.12 14.30
3.3 13.43 14.30 11.87 11.87 13.37 14.30
4 8 8 8 8 8 8

5 4.14 6.01 6.01 6.01 6.01 6.01
6 4.49 4.49 4.49 6.21 4.49 6.21
7 11.83 12.38 2.81 12.38 2.88 12.38
8 6.12 6.23 8.53 8.53 8.53 8.53
9 8 8 8 8 8 8

9.1 ´1.91 ´1.91 8 8 8 8

9.2 ´1.91 ´1.91 10.61 10.61 8 8

9.3 8 8 8 8 8 8

10 8 8 12.27 12.27 8 8

11 12.34 8 11.37 14.10 11.37
12 7.42 11.78 7.42 11.78 7.42 11.78
13 1.51 1.56 1.51 1.59 1.51 1.59

DIRECT [48], which also relies on the rectangular partition of the feasible region.
The open-source implementation [1] was used to produce the results for the 2-
and 3-dimensional test suite.

Finally, a non-adaptive optimization algorithm, referred to as Sobol, was imple-
mented using the so-called LPτ sequences [86], and is known to be the worst
case quasi-optimal since it generates the objective function evaluation locations
nearly uniformly over the feasible region.

Results. Different implementations of the Rect algorithm are compared in
Tables 4.2 and 4.4 by the value of (4.15) after a predefined number of objective
function evaluations. Since an analytical expression of the integral in (4.6) is
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Table 4.3: Comparison of different algorithms using the 2-dimensional test suite
from [34]. Optimization stops after a predefined number of function evaluations
Nmax.

Rect-1 GB Simpl DIRECT Sobol
Nmax Nmax Nmax Nmax Nmax

f 3000 5000 3000 5000 3000 5000 3000 5000 3000 5000
1 5.30 5.80 5.30 5.80 5.30 6.86 4.14 8 0.97 1.95
2 6.93 6.93 6.93 6.93 6.95 8 3.71 3.71 1.82 2.01
3 13.80 14.30 3.96 4.73 8 8 5.58 5.58 1.36 4.54
3.1 14.16 14.16 3.44 4.36 8 8 5.58 5.58 3.44 3.44
3.2 14.16 14.16 3.44 4.36 8 8 5.58 5.58 1.80 1.80
3.3 13.43 14.30 3.31 4.55 8 8 5.58 5.58 1.55 2.33
4 8 8 8 8 2.97 3.29 8 8 8 8

5 4.14 6.01 3.97 6.01 6.01 6.01 4.48 4.48 0.76 1.37
6 4.49 4.49 2.66 4.49 4.25 4.25 1.78 1.78 ´0.48 ´0.48
7 11.83 12.38 1.82 3.03 25.56 29.61 3.74 6.67 1.31 1.31
8 6.12 6.23 3.83 6.12 6.23 8.58 4.70 4.70 0.99 0.99
9 8 8 8 8 8 8 8 8 0.50 1.28
9.1 ´1.91 ´1.91 8 8 8 8 8 8 ´1.33 0.47
9.2 ´1.91 ´1.91 4.59 12.41 8 8 8 8 ´0.23 ´0.23
9.3 8 8 8 8 8 8 8 8 2.15 2.15
10 8 8 4.85 9.22 8 8 4.64 4.64 3.39 3.39
11 12.34 8 5.30 6.06 8.04 8.04 8 8 2.86 3.00
12 7.42 11.78 4.65 6.02 2.38 2.38 4.32 4.32 3.22 4.24
13 1.51 1.56 1.51 1.51 1.37 1.58 1.29 1.86 1.15 1.38

Table 4.4: Comparison of different implementations of the Rect algorithm using
the 3-dimensional test suite from [34]. Optimization stops after a predefined
number of function evaluations Nmax.

Rect-1 Rect-MC
Nmax Nmax

f 3000 5000 3000 5000

20 8 8 8 8

21 10.58 12.92 10.58 12.89
22 9.66 13.32 12.19 13.32
23 0.84 1.20 0.88 1.19
24 12.21 13.57 10.53 13.57
25 4.00 4.00 4.00 4.00
26 8 8 8 8
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Table 4.5: Comparison of different algorithms using the 3-dimensional test suite
from [34]. Optimization stops after a predefined number of function evaluations
Nmax.

Rect-1 GB Simpl DIRECT Sobol
Nmax Nmax Nmax Nmax Nmax

f 3000 5000 3000 5000 3000 5000 3000 5000 3000 5000

20 8 8 8 8 8 8 3.15 3.37 1.86 1.86
21 10.58 12.92 3.91 3.91 4.45 4.61 8 8 1.82 1.82
22 9.66 13.32 3.12 3.67 4.11 4.52 15.91 17.82 1.52 2.13
23 0.84 1.20 0.84 1.20 0.94 0.94 1.18 1.18 1.44 1.44
24 12.21 13.57 6.45 6.45 3.88 3.88 8 8 1.61 1.61
25 4.00 4.00 4.00 4.00 1.18 1.28 4.47 4.47 1.20 1.20
26 8 8 8 8 ´0.69 ´0.60 2.52 2.52 ´0.81 ´0.81

not available in the 3-dimensional case, only versions Rect-1 and Rect-MC of the
Rect algorithm are included in Table 4.4. The original numbering of the objective
functions, as on p. 468 ´ 469 in [34], is given in the first column of the tables.
Symbol8means that the exact global minimum was found.

Analogous results for various other algorithms compared are presented in
Tables 4.3 and 4.5.

Discussion. The results in Table 4.2 show that different versions of the Rect
algorithm perform similarly in the 2-dimensional case with the exception of
two problems (9.1 and 9.2), where Rect-1 was unable to converge to the global
minimum. There appears to be no significant performance difference in the
3-dimensional case as well, as Table 4.4 implies. This suggests that an efficient
implementation Rect-1 could be the right choice for higher dimensional problems
as well.

The comparison of the algorithms in Tables 4.3 and 4.5 shows that the Rect
algorithm for the test suite in question seems to perform the best, as it reaches
the highest precision both in the 2- and 3-dimensional experiments. As could be
expected, the results of the non-adaptive Sobol algorithm are the worst.

It can be seen that the various versions of the Rect algorithm perform com-

82



4.4. Numerical Experiments

Table 4.6: The parameters of the GKLS test function classes.

Class d f˚ nlocal r˚ ρ˚ ∆

1 2 ´1 10 0.9 0.2 10´4

2 2 ´1 10 0.9 0.1 10´4

3 3 ´1 10 0.66 0.2 10´6

4 3 ´1 10 0.9 0.2 10´6

5 4 ´1 10 0.66 0.2 10´6

6 4 ´1 10 0.9 0.2 10´6

parably with algorithm Simpl in the 2-dimensional case, however, contrary to
the expectations discussed, Simpl performs worse in the 3-dimensional case.
The performance of GB and DIRECT is similar in the 2-dimensional case and is
slightly worse than that of Rect algorithm implementations. In the 3-dimensional
case, Rect-1 and DIRECT produced the best results.

4.4.2 Experiments with the GKLS Function Generator

Experimental Setup. In the second part of the experimental investigation the
test functions produced by the free implementation [2] of the GKLS test function
generator [29] were minimized. A methodology similar to that of [78] was
followed.

The GKLS generator produces multi-extremal and multivariate testing functions
of desirable differentiability for testing box-constrained global optimization
algorithms. Each testing function is obtained by systematically distorting a
convex quadratic function by polynomials forming the surface spikes. One
hundred functions are available per function class that is fully reproducible by
supplying five parameters:

1. d, problem dimension;

2. nlocal, the number of local minima;

3. f˚, the value of the global minimum;

4. r˚, the distance between the paraboloid vertex and the global minimizer;
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5. ρ˚, the radius of the attraction region of the global minimizer.

In this work 6 continuously differentiable GKLS function classes from [78],
defined over A “ r´1, 1sd, were used. The parameters of these classes are given
in Table 4.6. It is noteworthy that the complexity of the objective functions
grows when parameter r˚ grows or parameter ρ˚ decreases. As a result, for each
dimension d, the second class in Table 4.6 is more complicated than the first one.

The global optimization problems in this experiment are considered difficult.
The performance of the base global search algorithm Rect-1, as well as algorithms
derived from it, i. e. GB and Cluster, was assessed to determine the ability
of the algorithms to handle complicated global optimization problems. It is
important to check how the suggested modifications compare to the global
search algorithm Rect-1 they are based on as well as to each other. Moreover, a
comparison with the popular algorithms is also important. Therefore the results
of the DIRECT [48] and its locally-biased modification DIRECTl [26, 27], as they
originally appeared in [78], are included. According to the source [78], both
algorithms were implemented according to the description in [25].

The algorithms were run with a budget of Nmax “ 1000000 function evaluations
until a trial point xi “ pxi1, . . . , xidq, i “ 1, . . . , n, close to the global minimizer
x˚ “ px˚1 , . . . , x˚dqwas generated such that

|xij ´ x
˚
j | ď

d
?

∆|bj ´ aj|, j “ 1, . . . , d, (4.16)

where the feasible region is A “
śd

i“1rai, bis and ∆ is a precision parameter. The
values for ∆ are also given in Table 4.6.

Results. Tables 4.7 and 4.8 show maxi“1,...,100 ni and 1
100

ř100
i“1 ni, respectively,

for each of the test classes, where ni denotes the number of function evaluations
performed before the stopping condition (4.16) was met. The notation 106pkq

means that for k functions in a given class the global minimizer was not found
after conducting Nmax function evaluations. The best result in each row is
highlighted. The results are displayed graphically in Figure 4.5.

84



4.4. Numerical Experiments

Table 4.7: The maximum number of trials for the GKLS classes: maxi“1,...,100 ni.

Class Rect-1 GB Cluster DIRECT DIRECTl

1 2121 449 463 1159 2318
2 9833 1401 1130 3201 3414
3 12595 5626 5582 12507 13309
4 46024 8355 7589 ą 106p4q 29233
5 131341 41210 26394 ą 106p4q 118744
6 416556 47597 44272 ą 106p4q 287857

Table 4.8: The average number of trials for the GKLS classes: 1
100

ř100
i“1 ni.

Class Rect-1 GB Cluster DIRECT DIRECTl

1 342.70 218.08 248.71 198.89 292.79
2 1485.15 607.75 662.33 1063.78 1267.07
3 3958.98 2759.15 3200.74 1117.70 1785.73
4 8027.53 3765.39 4364.15 >42322.65 4858.93
5 19181.31 13176.30 10660.82 >47282.89 18983.55
6 39642.24 18097.49 16953.56 >95708.25 68754.02
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Figure 4.5: The number of trials for the GKLS test classes. Left: The worst-case:
maxi“1,...,100 ni. Right: The average-case: 1

100

ř100
i“1 ni.
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Discussion. The results in Tables 4.7 and 4.8 show that algorithms Cluster and
GB exhibit similar performance and produce the best results for the given family
of test functions. These extensions of the Rect-1 global search strategy consume
considerably fewer function evaluations in the average and worst cases than the
original algorithm. Cluster worst-case performance is the best in general.

It can be seen that Rect-1 performs worse than DIRECT for the first three classes,
but better for the rest of the classes, as it manages at least to converge for all
objective functions. Rect-1 performs worse than DIRECTl in general.

4.5 Chapter Summary and Conclusions

1. Different implementations of a statistical hyper-rectangular decomposition-
based global optimization algorithm Rect were described. Implementation
Rect-1 is efficiently computable in any dimension and results in no signific-
ant difference as compared to other implementations, involving integral
approximation techniques. Rect-1 is therefore suitable to serve as a basis
for derived global optimization algorithms.

2. The performance of the Rect algorithm is similar to that of DIRECT and
the simplicial decomposition-based global search algorithm Simpl.

3. Due to the fact that the Rect-1 algorithm does not enter the fast convergence
mode in a moderate number of iterations, two heuristic global search
acceleration techniques were proposed, preventing Rect-1 from excessively
exploring the vicinity of the suboptimal local minimizers. Specifically,
algorithm GB operates by switching between explicitly defined global and
local search phases based on improvement achieved in the current phase.
On the other hand, algorithm Cluster employs a clustering procedure to
identify the well-explored regions.

4. The extensions GB and Cluster consume considerably fewer function eval-
uations than the original algorithm Rect-1 optimizing difficult multi-modal
global optimization problems. For such problems Cluster worst-case per-
formance is the best among the considered algorithms.
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Chapter 5

Asymptotic Properties in Simplicial
Statistical Global Optimization

In the present chapter a theoretical investigation of certain properties of a sta-
tionary isotropic Gaussian random field is carried out in order to support a
feature of a recent global optimization algorithm. More precisely, a station-
ary isotropic Gaussian random field is considered as a statistical model of an
objective function in the context of global optimization. An asymptotic expres-
sion of an improvement probability-related criterion for this assumed statistical
model in the setting of simplicial global optimization is sought. To this end,
the asymptotic behavior of the conditional mean and variance of the random
field with respect to the random field values known at the vertices of a simplex
is investigated, assuming that the simplex is contracting. The obtained result
allows for driving a correspondence between the probability of improvement
related criterion and a simply-computable, but heuristically justified simplex
selection criterion in a recent simplicial global optimization algorithm, primarily
targeting bivariate problems. Furthermore, the results in this chapter enable to
simplify the probability of improvement in a higher-dimensional case.

The first section of this chapter provides the context of the research. The second
section introduces the problem of the correspondence between the probability
of improvement and the computationally efficient simplex selection criterion in
question. A detailed statement of a theoretical link being sought is given in the
third section. Finally, the derivation of relevant asymptotic properties of the ran-
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dom field and the resulting theorem, formalizing the targeted correspondence,
are presented in the fourth section.

5.1 Introduction

A global optimization of an expensive black-box objective function is considered.
A well-established approach in this situation is to resort to the rational decisions
theory and statistical models of uncertainty, organizing the global optimization
process as a sequence of rational decisions under uncertainty.

A global optimization approach based on the statistical models of the objective
function originally suffered from intensive auxiliary computations, involved in
the optimization of a statistical criterion value, as the probability of improvement
in the P-algorithm (2.18) or the expected improvement in the Maximum expected
improvement algorithm (2.17) to determine the next function evaluation location.
This limited the applicability of these methods to expensive objective functions
to counterbalance the associated cost of auxiliary computations. To extend
the class of functions that could be targeted by these methods, computational
simplifications are required.

Similarly, in the past, Lipschitzian optimization methods were known to in-
volve heavy computations and therefore apply to expensive objective functions
only [40]. However, the introduced advanced modifications, involving various
decompositions [9, 19, 43, 55, 59, 73, 78, 83] of the feasible region, reduced the
computational burden and expanded the applicability of these methods. Similar
simplifications could also be applied to the methods based on the statistical
models of the objectives.

The idea of adapting a statistical model of the objective for the decomposed
feasible region was implemented in a recent algorithm [16], where the subsets
in the decomposition are simplices, obtained by means of the Delaunay trian-
gulation. The algorithm is interesting as the authors provide an established
convergence rate for it in the two-dimensional case, although the algorithm itself
can be applied in higher dimensions as well. In the present chapter asymptotic
properties of the statistical model are proved which, in a two-dimensional case,
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provide a theoretical basis for the computational simplification employed by
this global optimization algorithm as well as its certain generalization to higher
dimensions.

5.2 Motivation of the Research

This section introduces the problem of establishing the theoretical correspond-
ence between the probability of improvement in the P-algorithm and a relatively
simple heuristic selection criterion in a recent simplicial decomposition-based
global optimization algorithm [16]. First, certain specialized forms of the P-
algorithm, defined by (2.18) in the most general form, are given. Then, the
selection criterion for a simplex in algorithm [16] is given. The specific corres-
pondence being sought is introduced here and is further detailed in Section 5.3.

A global optimization problem minxPA fpxq is considered, where fpxq is expens-
ive and black-box.

Let us recall the general form of the P-algorithm, this time with an altered
definition of the minimal target value at the current optimization step, i. e.
yon ă mini“1,...,n yi:

xn`1 “ arg max
xPA

Ppξpxq ď yon|ξpxiq “ yi, i “ 1, . . . , nq, (5.1)

where the probability in question is defined by the chosen statistical model
ξpxq, x P A.

Normally, the random variables ξpxq are assumed to be distributed according to
the Gaussian probability density. In that case, the probability in (5.1) is defined
by the formula

Ppξpxq ď yon | ξpxiq “ yi, i “ 1, . . . , nq “ Φ

ˆ

yon ´mpx|ξpxiq “ yi, i “ 1, . . . , nq

spx|ξpxiq “ yi, i “ 1, . . . , nq

˙

,

(5.2)
where Φp¨q denotes the Gaussian cumulative distribution function, while mp¨q
and s2p¨q denote the conditional mean and conditional variance of ξpxq, respect-
ively.
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Since Φptq is monotonically increasing, maximizing the probability of improve-
ment (5.2) is equivalent to maximizing

yon ´mpx|ξpxiq “ yi, i “ 1, . . . , nq

spx|ξpxiq “ yi, i “ 1, . . . , nq
. (5.3)

It was shown in [16, 111, 112] that an algorithm maximizing (5.3) to select a new
function evaluation location can be justified without the Gaussian assumption
as well.

The expressions for mp¨q and sp¨q in (5.2) and (5.3) are complicated and require
time-consuming computations. Fortunately, the prospect of computational
simplifications appeared with optimization algorithms based on simplicial de-
compositions of the feasible region and simplicial statistical models, as in such
case only trials closest to x P A could be used in the definitions of mp¨q and sp¨q,
as opposed to the full set of the trials performed.

A simplicial statistical model originally appeared in the two-dimensional Select
and clone algorithm by [110]. The auxiliary maximization over the complete
feasible region at every optimization step was replaced by the maintainance of
the priority queue comprised of triangular sub-regions of A, where the priority
of the triangle Si is equal to the maximum of an equivalent to probability of
improvement (5.3) over the triangle:

πi “ arg max
xPSi

ˆ

yon ´mpx|ξpxiq “ yi, i “ 1, . . . , nq

spx|ξpxiq “ yi, i “ 1, . . . , nq

˙

. (5.4)

The point xmax, maximizing expression (5.4), was given explicitly for a regular
triangle. The algorithm was later generalized for higher dimensions in [113].

Another algorithm [16] bases the global optimization process on a statistical
model, adjusted for a simplicial decomposition of the feasible region by means
of the Delaunay triangulation. The algorithm has an established convergence
rate in the bivariate case, although is applicable to higher dimensions as well.
An initial simplicial covering is iteratively refined, selecting simplices based on
a computationally efficient criterion, further reducing the computational burden,
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as compared to Select and clone. The criterion is expressed as follows:

ηi “
V pSiq

1
d`1

řd`1
j“1 zj ´ yon

, (5.5)

where V pSiq is the volume of simplex Si, z “ pz1, z2, . . . , zd`1q are the values of
the objective function at the vertices of the simplex, and yon ă minj“1,...,n yj is
the target value at step n` 1.

The priority criterion (5.5) was justified only heuristically in [16]. Therefore it
seemed reasonable to determine its mathematical relationship with the prob-
ability of improvement (5.2) or, alternatively, with its equivalent in terms of
maximization (5.3). Let us note that this relationship is clear in the case of Select
and clone algorithm from (5.4). It will be shown in the following section that
under some assumptions the criterion (5.5) is equivalent to (5.3) at the center of
a regular simplex.

5.3 Statement of the Problem

Let ξpxq, x P A Ď Rd, be a stationary isotropic Gaussian random field with the
mean value µ, variance σ2, and the correlation function ρpτq “ expp´cτ 2q, τ ě 0.
Let the values of ξpxq be known at the vertices ai, i “ 1, . . . , n ` 1, of a regular
n-simplex with edge length equal to δ, such that ξpaiq “ zi, i “ 1, . . . , n` 1. Let
a be the weight center of the simplex.

The behavior of the conditional mean and conditional variance of ξpaq with
respect to ai, zi, i “ 1, . . . , n`1,when the edge length of the simplex vanishes, i. e.
δ Ñ 0, constitutes an important part of the discussion that follows. To compute
the conditional mean and variance, the correlation coefficients between ξpajq
and ξpakq as well as between ξpajq and ξpaq, are needed. The former is obviously
equal to ρjk “ expp´cδ2q, and the latter is equal to ρj “ expp´cδ2 d

2pd`1q
q, as the

distance between a and aj is equal to δ
b

d
2pd`1q

. In the upcoming discussion,
the following notation and expressions of conditional mean and conditional
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variance will be used:

Epξpaq|ξpaiq “ zi, i “ 1, . . . , d` 1q “ mpa|ai, zi, i “ 1, . . . , d` 1q “

“Mpδ, zq “ µ` exp

ˆ

´cδ2 d

2pd` 1q

˙

¨ IT ¨ C´1
¨ pz´ µIq, (5.6)

Varpξpaq|ξpaiq “ zi, i “ 1, . . . , d` 1q “ s2
pa|ai, zi, i “ 1, . . . , d` 1q “

“ S2
pδq “ σ2

ˆ

1´ exp

ˆ

´cδ2 d

d` 1

˙

¨ IT ¨ C´1
¨ I
˙

, (5.7)

where I denotes the pd` 1q-dimensional unit vector, z “ pz1, z2, . . . , zd`1q
T , and

C is a pd ` 1q ˆ pd ` 1q matrix with all the elements equal to expp´cδ2q except
the diagonal elements which are equal to 1.

Using the notation just introduced, the equivalent of the improvement probabil-
ity (5.3) at the center of the considered simplex can be expressed as follows:

ppδq “
yon ´Mpδ, zq

Spδq
, (5.8)

where the essential variables are presented explicitly. To avoid computations
involving fractions with denominators close to zero, instead of ppδq its reciprocal
value with a reverse sign p̂pδq should be used for the implementation of the
algorithm as well as in a further analysis:

p̂pδq “
Spδq

Mpδ, zq ´ yon
. (5.9)

On the other hand, the heuristically justified criterion (5.5) adapted for a regular
simplex can be written as follows:

ηpδq “
Q

z̃ ´ yon
, (5.10)

where z̃ “ 1
d`1

řd`1
i“1 zi, Q is the volume of the considered simplex and yon ă

mini“1,...,d`1 zi.

The goal is to show that in the 2-dimensional case (d “ 2) criterion ηpδq (5.10),
i. e. a version of ηi (5.5) for a regular simplex, well approximates the equivalent
of the improvement probability at the center of a regular simplex p̂pδq (5.9) for
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small simplices, i. e. as δ Ñ 0. It is expected that for d ą 2 a similar expression
to ηi (5.5) can approximate p̂pδq (5.9) as well.

5.4 Assessment of Approximation

Both criteria p̂pδq and ηpδq, compared in this chapter, obviously converge to 0, as
δ Ñ 0. For the case d “ 2, the asymptotic behavior of ηpδq, as δ Ñ 0, becomes
clear after replacing Q in (5.10) by its expression via δ:

ηpδq “

?
3δ2

4pz̃ ´ yonq
. (5.11)

The rest of this section is devoted to the investigation of the asymptotic behavior
of p̂pδq (5.9).

To begin with, it is necessary to derive an explicit form of C´1, as it is included
into an expression of p̂pδq via Mpδ, zq and S2pδq. Matrix C has the structure
analogous to the mˆm matrix

U “

¨

˚

˚

˚

˚

˝

1 a . . . a

a 1 . . . a

. . . . . . . . . . . .

a a . . . 1

˛

‹

‹

‹

‹

‚

, where a P R. (5.12)

Lemma 5.4.1. The following equality holds

V “ U´1
“

1

u

¨

˚

˚

˚

˚

˝

t a . . . a

a t . . . a

. . . . . . . . . . . .

a a . . . t

˛

‹

‹

‹

‹

‚

, (5.13)

where t “ ´pm´ 2qa´ 1, and u “ pm´ 1qa2 ´ pm´ 2qa´ 1.
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Proof. The statement is proved simply by computing the elements of W “ U ¨V :

wii “
`

pm´ 1qa2
` t

˘

{u “
`

pm´ 1qa2
´ pm´ 2qa´ 1

˘

{u “ 1,

wij “
`

a` at` pm´ 2qa2
˘

{u “

“
`

a` ap´pm´ 2qa´ 1q ` pm´ 2qa2
˘

{u “ 0, i ‰ j. (5.14)

Thus, we have proved that W is a unit matrix. ˝

Corollary 5.4.2. The inverse correlation matrix C´1 is a pd` 1q ˆ pd` 1q matrix of
the structure presented by formula (5.12), where t “ ´pd ´ 1q expp´cδ2q ´ 1, and
u “ d expp´2cδ2q ´ pd´ 1q expp´cδ2q ´ 1 “ pd expp´cδ2q ` 1qpexpp´cδ2q ´ 1q.

In order to investigate the convergence of p̃pδq to 0, as δ Ñ 0, we start from the
convergence of its constituent parts, Mpδ, zq and S2pδq.

The substitution of C´1 in (5.6) by its expression defined in Corollary 5.4.2 yields

Mpδ, zq “ µ` exp

ˆ

´cδ2 d

2pd` 1q

˙

¨ IT ¨
1

u

¨

˚

˚

˚

˚

˝

t a . . . a

a t . . . a

. . . . . . . . . . . .

a a . . . t

˛

‹

‹

‹

‹

‚

¨ pz´ µIq “

“ µ`
1

u
exp

ˆ

´cδ2 d

2pd` 1q

˙

`

expp´cδ2
q ´ 1

˘

IT ¨ pz´ µIq “

“ µ`
exp

´

´cδ2 d
2pd`1q

¯

pexpp´cδ2q ´ 1q
řd`1
i“1 pzi ´ µq

pd expp´cδ2q ` 1qpexpp´cδ2q ´ 1q
“

“ µ`
exp

´

´cδ2 d
2pd`1q

¯

řd`1
i“1 pzi ´ µq

d expp´cδ2q ` 1
. (5.15)

The expansion

expp´cx2
q “ 1´ cx2

` opx2
q, (5.16)

applied to all the exponential terms in (5.15), gives the following asymptotic
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expression of Mpδ, zq:

Mpδ, zq “ µ`
p1´ cδ2 d

2pd`1q
` opδ2qq

řd`1
i“1 pzi ´ µq

d` 1´ dcδ2 ` opδ2q
“

“ z̃ ` opδq. (5.17)

Similarly, the substitution of C´1 in (5.7) by its expression defined in Corol-
lary 5.4.2 yields

S2
pδq “ σ2

¨

˚

˚

˚

˚

˝

1´ exp

ˆ

´cδ2 d

d` 1

˙

¨ IT ¨
1

u

¨

˚

˚

˚

˚

˝

t a . . . a

a t . . . a

. . . . . . . . . . . .

a a . . . t

˛

‹

‹

‹

‹

‚

¨ I

˛

‹

‹

‹

‹

‚

“

“ σ2
p1´

1

u
exp

ˆ

´cδ2 d

d` 1

˙

¨

¨ p´pd` 1qppd´ 1q expp´cδ2
q ` 1q ` pd2

` dq expp´cδ2
qqq “

“ σ2

˜

1´
exp

`

´cδ2 d
d`1

˘

pd` 1q pexpp´cδ2q ´ 1q

pd expp´cδ2q ` 1qpexpp´cδ2q ´ 1q

¸

“

“ σ2

˜

1´
pd` 1q expp´ cd

d`1
δ2q

d expp´cδ2q ` 1

¸

. (5.18)

The expansion

expp´cx2
q “ 1´ cx2

`
1

2
c2x4

` opx4
q, (5.19)

applied to all the exponential terms in (5.18), yields the following asymptotic
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expression of S2pδq:

S2
pδq “ σ2

d expp´cδ2q ´ pd` 1q expp´ cd
d`1

δ2q ` 1

d expp´cδ2q ` 1
“

“ σ2
dp1´ cδ2 ` 1

2
c2δ4 ` opδ4qq ´ pd` 1qp1´ cd

d`1
δ2 ` 1

2

`

cd
d`1

˘2
δ4 ` opδ4qq ` 1

d expp´cδ2q ` 1
“

“ σ2
dp´cδ2 ` 1

2
c2δ4 ` opδ4qq ´ pd` 1qp´ cd

d`1
δ2 ` 1

2

`

cd
d`1

˘2
δ4 ` opδ4qq

d expp´cδ2q ` 1
“

“ σ2
´cdδ2 ` 1

2
c2dδ4 ` opδ4q `

cdpd`1q
d`1

δ2 ´ 1
2

`

cd
d`1

˘2
pd` 1qδ4 ` opδ4q

d expp´cδ2q ` 1
“

“ σ2
p´cd` cdq δ2 ` 1

2

´

c2d´ c2d2

d`1

¯

δ4 ` opδ4q

d expp´cδ2q ` 1
“

“ σ2

c2d
2pd`1q

δ4 ` opδ4q

d expp´cδ2q ` 1
“ σ2

c2d
2pd`1q

δ4 ` opδ4q

dp1´ cδ2 ` opδ2qq ` 1
“

“ σ2

c2d
2pd`1q

δ4 ` opδ4q

d` 1` dp´cδ2 ` opδ2qq
“ σ2

c2d
2pd`1q

δ4 ` opδ4q

d` 1` opδq
“

“ σ2c2δ4 d

2pd` 1q2
` opδ4

q. (5.20)

The obtained assessments of asymptotic expressions (5.17) and (5.20) can be
summarized as the following theorem.

Theorem 5.4.3. The following equation is valid

p̃pδq “
σcδ2

pd` 1qpz̃ ´ yonq

c

d

2
` opδ2

q. (5.21)

Corollary 5.4.4. In the case d “ 2, the following relation of asymptotic equivalence is
valid

p̃pδq „
4
?

3

9
σcηpδq. (5.22)

Thus it has been demonstrated that in the 2-dimensional case for a regular
triangle, the heuristically justified and efficiently computable criterion (5.5) is
proportional to the analogue of the improvement probability at the center of
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such triangle (5.9), i. e. the theoretical justification of the criterion (5.5) has been
established.

In a higher dimensional case, an expression proportional to δ2 and depending
on the dimension can be used to approximate the analogue of the probability of
improvement (5.9).

5.5 Chapter Summary and Conclusions

1. Two criteria used in the construction of global optimization algorithms
based on simplicial statistical objective function models are considered.
The first criterion is an analogue to the probability of improvement at the
current optimization step. The other one is defined by a computationally
simpler formula, but lacks a strict theoretical justification. The asymptotic
equivalence of both criteria is demonstrated for contracting simplices in the
bivariate case. The obtained result theoretically supports the application
of the computationally simpler criterion in the bivariate case.

2. Insight into how the first criterion could be approximated in higher di-
mensions is provided. This result could be used in new optimization
algorithms.
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Chapter 6

Worst-Case Optimality in Univariate
Bi-objective Lipschitz Optimization

This chapter deals with the problem of univariate bi-objective optimization,
where each of the objectives satisfies the Lipschitz condition. The optimality of
an algorithm iteratively refining a division of the feasible interval into smaller
subintervals by trisecting a selected one is investigated. An interest in optimal
algorithms can be attributed to their sharing certain properties with other, prac-
tically applicable algorithms. In this case, trisection was previously used in a
number of single-objective multivariate algorithms.

An introduction in the first section of this chapter is followed by an interpretation
of the well-known Pijavskij-Shubert algorithm [70, 84] with respect to the concept
of optimality in the second section. A presentation of an optimal trisection in
the univariate single-objective Lipschitz optimization is also included. The third
section details the main results of this chapter, dealing with the bi-objective
case. Specifically, the tolerance of the lower Lipschitz bound over an interval is
generalized to arbitrary subintervals of the feasible interval. The one-step worst-
case optimality of trisecting an interval with respect to the resulting tolerance
is established. The trisection-based algorithm is introduced. Finally, some
numerical examples illustrating the performance of the algorithm are provided
in the fourth section.
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6.1 Introduction

It has recently become popular to approach multi-objective non-convex optimiz-
ation problems by meta-heuristic methods, despite the unexploited potential of
theoretically justified methods based on mathematical models. An interesting
task from the theoretical point of view is construction and investigation of the
properties of algorithms, optimal with respect to certain mathematical models
of non-convex problems. Two classical types of optimality - the average case
[6] and the worst-case [74] - have been thoroughly investigated in the single-
objective non-convex optimization case. Some of these ideas can be carried over
to the field of multi-objective optimization.

For example, it was shown in [97] that for the objective functions satisfying
the Lipschitz condition a worst-case optimal bi-objective algorithm amounts
to covering the feasible region by balls of minimum radius, analogously to the
single-objective case, as determined considerably earlier in [91]. Similarly, the
well-known one-step optimal Pijavskij-Shubert algorithm [70, 84] was generalized
to the bi-objective case in [98].

It is true, however, that the applicability of optimal algorithms is narrow, either
due to difficulties in practically checking the relevant assumptions or prohibit-
ive implementation complexity. Nevertheless, the design of practically useful
algorithms benefits from an understanding of the properties of the optimal
algorithms, as some of them might be shared [67, 73, 88, 106].

The present chapter investigates the optimality of trisecting an interval in an
iterative univariate bi-objective optimization algorithm with the assumption of
both objectives satisfying the Lipschitz condition. At each step of optimization
an algorithm selects an interval for division into three parts by placing new
trials in a way, that is shown to be worst-case optimal with respect to a specific
criterion.

The favourable properties of using trisection in the univariate single-objective
optimization were demonstrated in [54]. An optimal univariate algorithm
for bi-objective problems is interesting in the view of developing multivariate
algorithms, using the adaptive diagonal partitions of hyper-rectangles. The
single-objective multivariate algorithms utilizing this scheme are detailed in
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[55, 79–82]. The results in the present chapter support the type of trisection used
in [115].

This chapter deals with optimality of partitioning an interval. Other methods
have also considered optimal interval partitioning, however, differently defined.
The latter circumstance is illustrated by starting with an optimal partitioning in
the single-objective case, including a specific interpretation of the well-known
Pijavskij-Shubert algorithm [70, 84]. The main results, i. e. the treatment of the
bi-objective case, follow immediately afterwards together with some illustrative
experiments.

6.2 One-Step Worst-Case Optimal Methods for Single-

Objective Univariate Optimization

6.2.1 Bisection in the Single-Objective Case

Let us consider a univariate single-objective Lipschitz optimization problem

min
xPA

fpxq, (6.1)

|fpuq ´ fptq| ď L|u´ t|, u, t P A, L ą 0, (6.2)

where A is a closed interval, and L is the Lipschitz constant.

A well-known, theoretically justified and intuitively perceptible Pijavskij-Shubert
[70, 84] algorithm, identified by the names of its authors, solves the problem (6.1)
by iteratively updating the lower Lipschitz bound of the objective function val-
ues Fnpxq and performing the next function evaluation at the global minimizer
of Fnpxq:

Fnpxq “ max
i“1,...,n

pyi ´ L|x´ xi|q, (6.3)

xn`1 “ arg min
xPA

Fnpxq, (6.4)

where the objective function evaluations previously performed are xi, yi “ fpxiq,
i “ 1, . . . , n. This algorithm is presented here as apparently the first one-step
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worst-case optimal global optimization algorithm. The notion of optimality, with
respect to which this algorithm is interpreted, is explained below to facilitate
a unified analysis with the other cases of interest to this work, e. g. trisection
based algorithms.

In the algorithm in question an estimate of the global minimum after n objective
function evaluations is the best value found so far yon “ mini“1,...,n yi. Therefore
the worst-case error of the estimate with respect to the available information is
equal to

∆npXn,Ynq “ max
fp¨qPΦpL,nq

pyon ´min
xPA

fpxqq “ (6.5)

“ yon ´min
xPA

Fnpxq, (6.6)

where ΦpL, nq is the subclass of Lipschitz functions satisfying (6.2) and

Xn “ px1, . . . , xnq,Yn “ pfpx1q, . . . , fpxnqq. (6.7)

The notion of optimality is explained here by selecting the next function evalu-
ation location xn`1 to minimize the potential error, resulting from this choice:

xn`1 “ arg min
xPA

max
fp¨qPΦpL,nq

∆n`1ppXn, xq, pYn, fpxqqq. (6.8)

The equivalence of (6.8) to the following expression can be easily demonstrated:

xn`1 “ arg min
xPA

Fnpxq. (6.9)

The function Fnpxq is piecewise linear, as is obvious from (6.3), and its global
minimizer is computable using a simple analytical formula. The definition of
xn`1 P rxj, xj`1s, is illustrated on the left side of Figure 6.1, where xn`1 is denoted
by a star. The shaded subinterval indicates the part of the search region where
objective function values below the already known record yon are still possible.
The point xn`1 is the center of this subinterval. Moreover, its location coincides
with that defined by the optimal algorithm [91] with the budget of one objective
function evaluation.
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xj α1 α2
xj+1

yon

yj

yj+1

xj α1 α2
xj+1

yon

yj

yj+1

Figure 6.1: One-step worst-case optimal bisection (left) and trisection (right) of
an interval rxj, xj`1s in the single-objective Lipschitz optimization. The function
can fall below yon in the shaded area. The stars denote the worst-case function
values at the points that minimize the resulting maximum tolerance.

As proved in [91], the worst-case optimal algorithm searching for the global
minimum of Lipschitz continuous functions, given a predifined budget of ob-
jective function evaluations Nmax, is equivalent to selecting Nmax centers of balls
of minimum radius to cover the feasible region. Similarly, a center of one ball
is chosen in the one-step optimal algorithm. This can be seen considering the
left side of Figure 6.1, when an interval with endpoints α1 and α2, defined by
an intersection of the lower Lipschitz bound with a horizontal line at the level
yon, is regarded as the feasible region. The locations of the centers of three
minimal-radius balls in the optimal cover of rα1, α2swould be α1, xn`1 and α2.

Note that besides the considered subinterval rxj, xj`1s Ă A containing the
presumably single global minimizer of Fnpxq there might be other subintervals
ofA, that include regions of possible improvement over yon. However, if the next
function evaluation location were positioned in such a subregion, the reduction
of the worst-case error would not be guaranteed.

6.2.2 Trisection in the Single-Objective Case

Most of the computational effort in the algorithm considered in the previous
section is devoted to updating the Lipschitz lower bounds and selecting a subin-
terval for partitioning. It might therefore be beneficial to place more function
evaluations in the selected subinterval. The discussion that follows concen-
trates on the trisection of the selected interval. In addition to an interest in a
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stand-alone trisection-based algorithm, an optimal trisection of a search inter-
val is important from the applicability to the diagonal Lipschitz optimization
algorithms [55, 79–82] point of view.

Let us consider the minimization problem (6.1) and a branch-and-bound type
algorithm, similar to that considered in the previous section. However, this
time the selected search interval will be trisected. To simplify the formulas, it is
assumed that L “ 1.

Let the interval rxj, xj`1s be given with known fpxjq “ yj , fpxj`1q “ yj`1 ą yj .
The following problem needs to be solved:

pã, b̃q “ arg min
a,bPpxj ,xj`1q

max
fp¨qPΦpL,nq

∆n`2ppXn, a, bq, pYn, fpaq, fpbqqq, (6.10)

here ∆n`2p¨q is defined as in (6.6).

Let us first obtain an expression for ∆n`2p¨q. When two new function evaluations
are made inside the interval pxj, xj`1q, three intervals result, and hence three
new local minima of the lower Lipschitz bound (6.3). If the minimizers are
denoted by ti, i “ 1, . . . , 3, the following relations hold:

fpxjq ´ pt1 ´ xjq “ fpaq ´ pa´ t1q ùñ t1 “
yj ´ fpaq ` xj ` a

2
,

fpaq ´ pt2 ´ aq “ fpbq ´ pb´ t2q ùñ t2 “
fpaq ´ fpbq ` a` b

2
,

fpbq ´ pt3 ´ bq “ fpyj`1q ´ pxj`1 ´ t3q ùñ t3 “
fpbq ´ yj`1 ` b` xj`1

2
.

(6.11)

Correspondingly, the minima values at ti, i “ 1, . . . , 3, are:

M1 “ yj ´ pt1 ´ xjq “
yj ` fpaq ` xj ´ a

2
,

M2 “ fpaq ´ pt2 ´ aq “
fpaq ` fpbq ` a´ b

2
,

M3 “ fpbq ´ pt3 ´ bq “
fpbq ` yj`1 ` b´ xj`1

2
. (6.12)
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Now the following expression for ∆n`2p¨q results:

∆n`2p¨q “ minpyon, fpaq, fpbqq´

1

2
min pyj ` fpaq ` xj ´ a, fpaq ` fpbq ` a´ b, fpbq ` yj`1 ` b´ xj`1q , (6.13)

which is maximized when fpaq “ fpbq “ yon, and becomes

∆˚
n`2ppXn, a, bq, pYn, yon, yonqq “

“
1

2
max pyon ´ yj ´ xj ` a,´a` b, yon ´ yj`1 ´ b` xj`1q . (6.14)

To minimize the worst-case tolerance (6.14) and find the solution to (6.10), the
following terms should be equal:

yon ´ yj ´ xj ` a “ ´a` b “ yon ´ yj`1 ´ b` xj`1 ùñ

ã “ α1 `
1

3
pα2 ´ α1q, b̃ “ α1 `

2

3
pα2 ´ α1q,

α1 “ xj ` pyj ´ yonq, α2 “ xj`1 ´ pyj`1 ´ yonq. (6.15)

Thus it has been demonstrated that the worst-case optimal way to trisect an
interval is to split the subinterval rα1, α2s, where improvement is still possible,
into three equal parts (see the right side of Figure 6.1).

Similarly to the bisection case considered in Section 6.2.1, an optimal covering
of rα1, α2s by four balls/subintervals would consist of the balls/subintervals
centered at the points α1, ã, b̃ and α2. The radius of the optimal covering is equal
to 1{6pα2 ´ α1q.
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6.3 One-Step Worst-Case Optimal Trisection for Bi-

objective Univariate Optimization

A univariate bi-objective Lipschitz function fptq “ pf1ptq, f2ptqq, t P rxj, xj`1s is
considered, where

|fkpuq ´ fkptq| ď Lk|u´ t|, k “ 1, 2, (6.16)

for @u, t P rxj, xj`1s, L “ pL1, L2q
T , Lk ą 0, k “ 1, 2.

This section generalizes the concept of tolerance of the local Lipschitz lower
bound for the Pareto front in the univariate bi-objective optimization. The
tolerance was first introduced in [98]. The generalizations serve to establish
the one-step worst-case optimal way of trisecting a subinterval and to enable a
consistent implementation of the algorithm in Section 6.3.3.

This section contains three subsections. First, a set of definitions and lemmas
are presented that lead to the tolerance with respect to which the optimality of
trisection is defined. Second, the problem of establishing a one-step worst-case
optimal trisection of an interval is formally stated along with a corresponding
theorem formalizing the solution. The proofs of the lemmas and the theorem
are given in Appendix C. The last subsection gives a pseudo-code of a trisection-
based univariate bi-objective optimization algorithm.

6.3.1 Definitions

To begin with, the original concept of tolerance from [98] is presented (see Defin-
ition 6.3.1 of ∆ndp¨q), which applies to intervals rxj, xj`1s with known, mutually
non-dominating objective values at the endpoints. Further the definition is
extended to the case where the Lipschitz constants of the objectives can differ
from each other. In Definition 6.3.3 of ∆dp¨q the tolerance is extended to cover the
case where one of the endpoints dominates the other. It is shown that definitions
6.3.1 and 6.3.3 are actually coincident (Definition 6.3.5, ∆p¨q). Finally, the notion
of tolerance is generalized to an arbitrary subinterval rr1, r2s of rxj, xj`1s, at the
endpoints of which only the objective value ranges are known (Definition 6.3.6,
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xj t1 t2 xj+1

zj+1

yj

yj+1

zj

yj yj+1

zj+1

zj

π1

π2

∆nd

Figure 6.2: Illustration of the definition of ∆ndp¨q: fpxjq “ pyj, zjq and fpxj`1q “

pyj`1, zj`1q do not dominate each other. Left: the lines show the Lipschitz
bounds over the interval rxj, xj`1s. Right: ∆ndp¨q is shown as the length of the
highlighted line segment.

∆̄p¨q). The scope of these definitions is limited to a single interval, therefore they
are not to be confused with (6.6).

The following notation will be used:

f1ptq “ yt, f2ptq “ zt, f1pxiq “ yi, f2pxiq “ zi, i “ j, j ` 1, (6.17)

δy “ |yj ´ yj`1|, δz “ |zj ´ zj`1|, (6.18)

C “
1

2

b

L2
1 ` L

2
2, (6.19)

Ψ “ tfp¨q : function fp¨q satisfies (6.16) and fpxiq “ pyi, ziq, i “ j, j ` 1u. (6.20)

Let the values at the endpoints of the interval rxj, xj`1s be known, i. e. fpxjq “
pyj, zjq, fpxj`1q “ pyj`1, zj`1q.

Definition 6.3.1. When fpxjq and fpxj`1q do not strongly dominate each other
(yj ď yj`1, zj ě zj`1), the tolerance of the local Lipschitz lower bound for the
actual Pareto front over rxj, xj`1s is defined as

∆nd
ppxj, xj`1q, pfpxjq, fpxj`1qqq “

“ maxp||π1 ´ pyj, zjq
T
||, ||π2 ´ pyj`1, zj`1q

T
||q, (6.21)
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xj t1 t2 t̂ xj+1

zj

yj =ŷ

ẑ

yj+1

zj+1

yj =ŷ yj+1

zj

ẑ

zj+1

π̂

π1

π2

∆d

Figure 6.3: Illustration of the definition of ∆dp¨q: fpxjq “ pyj, zjq dominates
fpxj`1q “ pyj`1, zj`1q. Left: the thin lines show the Lipschitz bounds over the
interval rxj, xj`1s. The worst-case objective values at t̂ are yt̂ “ yj and any value
of z in the highlighted range; empty circles denote one of the possibilities. Right:
∆dp¨q is shown as the length of the highlighted line segment. The empty circle
corresponds to the example value of fpt̂q on the left: π̂ “ fpt̂q.

here π1 “ pyj ´ L1pt1 ´ xjq, zj ´ L2pt1 ´ xjqq
T , π2 “ pyj`1 ´ L1pxj`1 ´ t2q, zj`1 ´

L2pxj`1 ´ t2qq
T , t1 “

xj`xj`1

2
´

δy
2L1

, t2 “
xj`xj`1

2
` δz

2L2
. In Figure 6.2, ∆ndp¨q

corresponds to the longer of the two line segments, connecting either pyj, zjqT

and π1, or pyj`1, zj`1q
T and π2. ˝

Lemma 6.3.2.

∆nd
ppxj, xj`1q, pfpxjq, fpxj`1qqq “

“ C max

ˆ

pxj`1 ´ xjq ´
δy

L1

, pxj`1 ´ xjq ´
δz

L2

˙

. (6.22)

The case where fpxjq strongly dominates fpxj`1q (yj ă yj`1, zj ă zj`1) is shown
in Figure 6.3. Indeed, fptq is strongly dominated by fpxjq for all t P pt̂, xj`1s,
t̂ “ xj`1 ´min

´

δy
L1
, δz
L2

¯

. In the figure, the condition

δy

L1

ď
δz

L2

(6.23)

holds. Thus the following equalities hold: t̂ “ xj`1 ´
δy
L1

, t1 “
xj`xj`1

2
´ δz

2L2
,

t2 “
xj`xj`1

2
´

δy
2L1

. The dominated subinterval pt̂, xj`1s should be excluded from
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xj l1 u1 l2 u2
xj+1

zk

zj+1

yk

yj

zj

yj+1

yk yj yj+1

zk

zj+1

zj

f(xk )

Figure 6.4: Subintervals generated from rxj, xj`1swhen a dominating fpxkq is
known for some trial point xk ‰ xj, xj`1. Here L1 “ 1.4, L2 “ 1. On the right, the
range of the objectives over the interval rxj, xj`1s is displayed as a closed octagon.
A point fpxkq “ pyk, zkq dominates a part of it. The shaded regions denote the
part where non-dominated solutions are still possible: tpy, zq : y ď yk or z ď zku.
On the left, the non-dominated values are still possible in the subintervals
S1 “ rl1, u1s and S2 “ rl2, u2s. Note that for endpoints l1, u1, l2, u2, only the
objective value ranges are known.

the further optimization process. Since the possible values at the endpoints of the
remaining subinterval rxj, t̂s do not strongly dominate each other, the tolerance
for rxj, xj`1s is defined as equal to that of rxj, t̂s based on the Definition 6.3.1 as
the largest possible with respect to the objective value ranges at t̂.

This is formalized in the following definition.

Definition 6.3.3. When fpxjq strongly dominates fpxj`1q (yj ă yj`1, zj ă zj`1)
and t̂ “ xj`1 ´ min

´

δy
L1
, δz
L2

¯

, then the tolerance for the interval rxj, xj`1s is
defined as

∆d
ppxj, xj`1q, pfpxjq, fpxj`1qqq “ max

fp¨qPΨ
∆nd

ppxj, t̂q, pfpxjq, fpt̂qqq. (6.24)

˝
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Lemma 6.3.4.

∆d
ppxj, xj`1q, pfpxjq, fpxj`1qqq “

“ C max

ˆ

pxj`1 ´ xjq ´
δy

L1

, pxj`1 ´ xjq ´
δz

L2

˙

. (6.25)

Definitions 6.3.1 and 6.3.3 cover the cases where function values are known at
both endpoints of an interval. Irrespective of the mutual domination of these
endpoint values, the tolerance is computed according to the identical formula
((6.22) and (6.25)). The tolerance depends on the length of the interval and the
smaller of the absolute differences of objective values at the interval endpoints.
Both cases are aggregated into one as follows.

Definition 6.3.5. For any interval rxj, xj`1swith known fpxjq, fpxj`1q

∆ppxj, xj`1q, pfpxjq, fpxj`1qqq “

“ C max

ˆ

pxj`1 ´ xjq ´
δy

L1

, pxj`1 ´ xjq ´
δz

L2

˙

. (6.26)

˝

During the operation of the algorithm, described in Section 6.3.3, the subinter-
vals, where only dominated function values are possible, are excluded from
further processing. Therefore it is possible to generate a subinterval rr1, r2s, the
endpoints of which satisfy xj ď r1 ď r2 ď xj`1, where only fpxjq, fpxj`1q are
known. Thus at r1 and r2 only the objective value ranges are known (e. g. see
subintervals rl1, u1s and rl2, u2s in Figure 6.4).

Definition 6.3.6. For an interval rr1, r2s, r1 ď r2, such that rr1, r2s Ď rxj, xj`1s,
and known fpxjq, fpxj`1q, the tolerance is defined as:

∆̄ppr1, r2, xj, xj`1q, pfpxjq, fpxj`1qqq “ max
fp¨qPΨ

∆ppr1, r2q, pfpr1q, fpr2qqq. (6.27)

˝
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Lemma 6.3.7. Denote

βppxj, xj`1q, pfpxjq, fpxj`1qqq “ pxj`1 ´ xjq ´min

ˆ

δy

L1

,
δz

L2

˙

. (6.28)

Then

∆̄ppr1, r2, xj, xj`1q, pfpxjq, fpxj`1qqq “

“ C ˆ

$

&

%

r2 ´ r1, if r2 ´ r1 ď βppxj, xj`1q, pfpxjq, fpxj`1qqq,

βppxj, xj`1q, pfpxjq, fpxj`1qqq, otherwise.

(6.29)

Definition 6.3.6 is the most general and reduces to Definition 6.3.5 when r1 “ xj ,
r2 “ xj`1. Moreover, this is the tolerance used in the definition of the optimality
of trisecting an interval, as described in the following subsection.

6.3.2 The One-Step Worst-Case Optimal Trisection Problem

The trisection of the interval rr1, r2s, xj ď r1 ă r2 ď xj`1, using points ã, b̃ P
pr1, r2q, ã ă b̃, is of interest. The worst-case optimality criterion for the choice of
the points is defined as follows:

pã, b̃q “ arg min
a,b

∆̄˚
ppa, b, r1, r2, xj, xj`1q, pfpxjq, fpxj`1qqq, (6.30)

where

∆̄˚
p¨q “ max

fp¨qPΨ
max t

∆̄ppr1, a, xj, bq, pfpxjq, fpbqqq,

∆̄ppa, b, xj, xj`1q, pfpxjq, fpxj`1qqq,

∆̄ppb, r2, a, xj`1q, pfpaq, fpxj`1qqq

u. (6.31)

Thus, assuming the most unfavorable function values at the division points, ã
and b̃ minimize the maximum of the resulting tolerances of the three subinter-
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vals.

The following lemma serves for proving the main theorem of this chapter.

Lemma 6.3.8. Let xj ď t1 ă u ă v ă t2 ď xj`1 and fpxjq, fpxj`1q be known. Then

max
fp¨qPΨ

∆̄ppu, v, t1, t2q, pfpt1q, fpt2qqq “ ∆̄ppu, v, xj, xj`1q, pfpxjq, fpxj`1qqq. (6.32)

Theorem 6.3.9. Let xj ď r1 ă r2 ď xj`1 and β “ βppxj, xj`1q, pfpxjq, fpxj`1qqq be
defined by (6.28). The worst-case optimal division points ã and b̃ of pr1, r2q, solving
(6.30), are defined as follows:

1) ã “ r1 `
1
3
pr2 ´ r1q, b̃ “ r1 `

2
3
pr2 ´ r1q, if 1

3
pr2 ´ r1q ă β;

2) an arbitrary choice ã P pr1, r2q, b̃ P pr1, r2q, otherwise.

Then ∆̄˚p¨q equals C
3
pr2 ´ r1q in the first case, and Cβ in the second.

Theorem 6.3.9 states that the one-step worst-case optimal division points ã and
b̃ for an arbitrary interval of the feasible region divide it into three equal parts.
Note that for very short intervals, all possible configurations of division points
are equivalent, thus division into three equal parts is always optimal.

6.3.3 The Trisection Algorithm

The pseudo-code of an algorithm, based on the discussion in Section 6.3, is
presented in Algorithm 4 as procedure Trisection. The functions f1pxq and f2pxq to
be minimized are defined over the interval ra, bs. The estimates of the Lipschitz
constants Lk, k “ 1, 2, are provided as input parameters. Initially, the first two
function evaluations at the interval endpoints are made, and the set of generated
intervals I is initialized to tra, bsu.
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Algorithm 4 The pseudo-code of the one-step worst-case optimal trisection
algorithm.

1: procedure TRISECTION(f1, f2, a, b, Nmax, ε, L1, L2)
2: nÐ 0, I Ð tra, bsu
3: x1 Ð a, x2 Ð b, compute fkpxiq, i “ 1, 2, k “ 1, 2
4: SPLIT(a, b, xi, I), i “ 1, 2
5: nÐ 2
6: while n ă Nmax and (ε is undefined or condition (6.33) does not hold) do
7: Select the interval R̄ “ rr̄1, r̄2s, which has the highest ∆̄ in the current

interval set I
8: If an interval with ∆̄ ă 0 is encountered, print a warning that either
L1 or L2 is too small

9: xn`1 Ð r̄1 `
1
3
pr̄2 ´ r̄1q, xn`2 Ð r̄1 `

2
3
pr̄2 ´ r̄1q, compute fpxiq, i “

n` 1, n` 2
10: I Ð pIzR̄q Y trr̄1, xn`1s, rxn`1, xn`2s, rxn`2, r̄2su

11: SPLIT(r̄1, r̄2, xi, I), i “ 1, . . . , n
12: SPLIT(a, b, xi, I), i “ n` 1, n` 2
13: nÐ n` 2
14: end while
15: return I , xi, fpxiq, i “ 1, . . . , Nmax

16: procedure SPLIT(u, v, xk, I)
17: J Ð ∅
18: for all R P I : R Ď ru, vs do
19: I Ð IzR
20: Find j P t1, . . . , n ` 2u such that R Ď rxoj , xoj`1

s, where xoi , i “
1, . . . , n` 2, are ordered trial points

21: Compute Sipxoj , xoj`1
, xkq, i “ 1, 2

22: R1 Ð R X S1, R2 Ð R X S2

23: if R1 XR2 “ H then
24: if R1 ‰ H then J Ð J YR1

25: end if
26: if R2 ‰ H then J Ð J YR2

27: end if
28: else J Ð J Y pR1 YR2q

29: end if
30: end for
31: I Ð J
32: end procedure
33: end procedure
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The algorithm operates iteratively until either the maximum number of function
evaluations Nmax is reached or the maximum tolerance, computed according to
(6.29), of the generated intervals falls below the chosen threshold ε ą 0, i. e.

max
rr1,r2sPI

∆̄ppr1, r2, xj, xj`1q, pfpxjq, fpxj`1qqq ď ε. (6.33)

At each iteration tolerances ∆̄p¨q are computed for every interval R “ rr1, r2s P I ,
according to (6.29). The interval with the largest ∆̄p¨q value, denoted R̄ “

rr̄1, r̄2s, is divided into three equal parts by the new trial points xn`1 and xn`2,
considering Theorem 6.3.9. R̄ is replaced by the three resulting subintervals in I .
If for some interval a negative ∆̄p¨q has been determined, a warning is printed
to inform the user that one of the provided Lipschitz constants Lk, k “ 1, 2, is
too small. The operation of the algorithm can continue, effectively excluding
this interval from further search, since (6.33) implies that only intervals with
∆̄p¨q ą ε ą 0 can be selected for partitioning. However, the user might prefer to
run the algorithm providing a larger Lipschitz constant.

After the new trials have been performed, the restructuring of I follows to
exclude the dominated subintervals. With the indexing of the trial points xi, i “
1, . . . , n ` 2, in an ascending order, i. e. xoj ď xol , if j ď l, given some trial
fpxkq, a subinterval of rxoj , xoj`1

s can be computed, where values of objective
i “ 1, 2, non-dominated by fpxkq, are still possible. It will be denoted by
Sipxoj , xoj`1

, xkq “ rli, uis Ď rxoj , xoj`1
s and computed as

li “

$

&

%

1
L
pfipxojq ` Lixoj ´ fipxkqq, if fipxkq ă fipxojq,

xoj , otherwise,

ui “

$

&

%

´ 1
L
pfipxoj`1

q ´ Lixoj`1
´ fipxkqq, if fipxkq ă fipxoj`1

q,

xoj`1
, otherwise.

(6.34)

This situation is illustrated in Figure 6.4, where, for brevity, xoj “ xj , xoj`1
“

xj`1.

The procedure Split uses (6.34) to update all intervals R P I : R Ď ru, vs with
respect to a trial point xk. Given the ordered trial points xoi , i “ 1, . . . , n` 2, the
index j P t1, . . . , n` 2u is found such that R Ď rxoj , xoj`1

s. The non-dominated
part of R, consisting of intersections R X Sipxoj , xoj`1

, xkq, i “ 1, 2, replaces R
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in I . Thus Step 4 excludes subintervals of ra, bs, dominated by either x1 or
x2. Step 11 updates the subintervals of R̄ in case of domination by any of the
previous points xi, i “ 1, . . . , n. Finally, Step 12 updates all subintervals, if they
are dominated by the new trials at xn`1 and xn`2.

The algorithm returns the performed trials xi, fpxiq, i “ 1, . . . , Nmax, and the set
of non-dominated intervals I .

6.4 Numerical Experiments

This section illustrates the performance of the proposed Trisection algorithm. In
order to have comparable results, an experimental methodology analogous to
that of the original study [98] on the univariate bi-objective optimization using
the concept of the Lipschitz local lower bound tolerance is followed.

Table 6.1: The test problems used.

Test problem Objectives Domain Lipschitz
constants Pareto set

Rastr
[98]

f1pxq “ px´ 0.5q2 ´ cosp18px´ 0.5qq
f2pxq “ px` 0.5q2 ´ cosp18px` 0.5qq

r´1, 1s
L1 “ 21
L2 “ 21

r´0.527622,´0.5sY
r0.5´ 2π

9
,´0.5` π

9
sY

r0.5´ π
9
,´0.5` 2π

9
sY

r0.5, 0.527622s

Fo & Fle
[23],
[22, pp. 339-340]

f1pxq “ 1´ expp´px´ 1q2q
f2pxq “ 1´ expp´px` 1q2q

r´4, 4s
L1 “ 1
L2 “ 1

r´1, 1s

Schaf
[22, pp. 339-340]

f1pxq “

$

’

’

’

&

’

’

’

%

´x, if x ď 1,

x´ 2, if 1 ă x ď 3,

4´ x, if 3 ă x ď 4,

x´ 4, if x ą 4,

r´1, 8s
L1 “ 1
L2 “ 12

r1, 2s Y r4, 5s

f2pxq “ px´ 5q2

The implementation of Algorithm 4 is referred to as Trisection in the tables.
For comparison, the analogous algorithm from [98], is included. The main
difference of [98] from the Trisection algorithm is the partitioning of the selected
subinterval, which in [98] is bisected into two equal parts; the name Bisection is
used for this algorithm throughout the section. The two algorithms are easy to
compare as they target the same type of optimization problems, moreover, the
same stopping criterion (6.33) is applicable to both of them. All the results for
algorithm Bisection are taken from the original study [98].
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Figure 6.5: The first experiment results of the Trisection algorithm for the
problem Rastr. Top left: the range of the objectives and the actual Pareto front.
Top right: the objective function values obtained by the algorithm Trisection.
The non-dominated and dominated solutions found are marked by the filled
points and the triangles, respectively. The shaded areas denote the objective
ranges over subintervals where non-dominated objective values are still possible.
Bottom: the same trials are displayed over the graphs of both objectives (dashed
lines). The actual Pareto set is shown as the thick line segments beneath the
graphs. The dotted lines denote the Lipschitz bounds over the unexplored
subintervals.

Three univariate bi-objective optimization problems have been used (see Table 6.1):
Rastr, Fo & Fle and Schaf. The first problem consists of two modified Rastrigin
functions and is common in testing single-objective optimization algorithms.
Problem Fo & Fle consists of two functions that are hard to optimize separately,
as they have large flat regions. The last problem poses a challenge due to the
discontinuous Pareto front and considerably different Lipschitz constants, as
well as function value ranges. The Figures 6.5-6.7 show the graphs of the object-
ives and Pareto set of each problem (bottom), as well as function ranges and the
Pareto front (top left).

In the first experiment algorithms Trisection and Bisection were allowed to run
until the maximum tolerance of all the generated intervals fell below a certain
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Figure 6.6: The first experiment results of the Trisection algorithm for the
problem Fo & Fle. The figure structure is analogous to that of Figure 6.5.

Table 6.2: Comparison of the algorithms when the maximum tolerance of the
intervals falls below ε “ 0.1.

Problem Rastr Fo & Fle Schaf

Algorithm Trisection Bisection Trisection Bisection Trisection Bisection

n 106 90 48 36 192 270
nd 30 29 20 16 124 186

threshold ε (condition (6.33)). The value ε “ 0.1 was used for all testing problems.
Table 6.2 shows the number n of function evaluations required (one evaluation
computes both objectives) and the number nd of non-dominated solutions
generated. A solution is considered non-dominated if there is no other solution
that weakly dominates it.

To reach the required tolerance for the test problems, the Trisection algorithm had
to perform 106, 48 and 192 function evaluations and produced, respectively, 30,
20 and 124 non-dominated solutions. The Bisection algorithm required 90, 36 and
270 function evaluations to produce 29, 16 and 186 non-dominated solutions.
The solutions generated by the Trisection algorithm are illustrated at the top
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6.4. Numerical Experiments
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Figure 6.7: The first experiment results of the Trisection algorithm for the
problem Schaf. The figure structure is analogous to that of Figure 6.5.

Table 6.3: Comparison of the optimization algorithms, using a fixed number of
function evaluations Nmax “ 100.

Problem Rastr Fo & Fle Schaf

Algorithm Trisection Bisection Trisection Bisection Trisection Bisection

nd 30 34 58 66 51 54
np 28 26 56 65 50 51
Error Rate 0.067 0.235 0.034 0.015 0.02 0.056
E 0.022 0.014 0 0 0.1 0.01
H 0.057 0.064 0.051 0.027 0.293 0.254

right of Figures 6.5-6.7.

In the second experiment, the same algorithms were compared according to
several metrics, but this time they were stopped after a fixed number (Nmax “

100) of function evaluations. The number of non-dominated solutions found
is denoted by nd, and the number of the true Pareto-optimal solutions among
them is np. The formula pnd´npq{nd produces the well-known Error Rate metric.
Denoting the actual Pareto front in the objective space by P and by P̃ the set of

117



6. Worst-Case Optimality in Univariate Bi-objective Lipschitz Optimization

non-dominated solutions found, the absolute error is defined:

E “ max
Ỹ PP̃

min
Y PP

}Ỹ ´ Y }. (6.35)

This value describes the proximity of the solutions found to the actual Pareto
front. The smaller it is, the better the performance of the algorithm. The final
metric

H “ max
Y PP

min
Ȳ PP̄

}Ȳ ´ Y }, (6.36)

where P̄ is the set of solutions found that belong to the actual Pareto front,
serves to describe the extent of a part of the Pareto front, not represented by the
solutions found. Similarly to (6.35), a better performance results in a smaller
value. Since an exact solution of optimization problems (6.35) and (6.36) is too
complex, an approximation was sought using the discretization of P by 106

uniformly distributed points over the Pareto set in the feasible region. The
results of the experiment are presented in Table 6.3. The discretization-related
error is smaller than 10´4, therefore 3 digits after the decimal point are displayed,
also, entries smaller than 10´4 are rounded to 0.

As could be expected, the results of the experiments illustrate a slightly worse
performance of the trisection-based algorithm as compared to that of the bisection-
based one, although the difference is not pronounced. However, the trisection
of the interval results in more function evaluations at a single iteration of the
algorithm, and the extension of a univariate algorithm to the higher-dimensional
case will supposedly show the advantages of trisection, as indicated in [115].

Table 6.4: The sensitivity of the Trisection algorithm to the accuracy of estimation
of the Lipschitz constants, when the maximum tolerance of the intervals falls
below ε “ 0.1.
Problem Rastr Fo & Fle Schaf

Lˆ 1{1.2 1 1.2 1.4 1{1.2 1 1.2 1.4 1{1.2 1 1.2 1.4

n 84 106 116 166 38 48 48 50 174 192 246 324
nd 27 30 33 60 14 20 20 22 113 124 159 230
np 26 28 32 59 12 18 18 20 112 123 159 230
Error Rate 0.037 0.067 0.03 0.017 0.143 0.1 0.1 0.091 0.009 0.008 0 0
max ∆̄p¨q 0.097 0.098 0.096 0.097 0.092 0.068 0.098 0.096 0.097 0.092 0.099 0.01
ř

∆̄p¨q 2.688 2.937 3.82 4.962 1.299 1.252 1.647 2.180 7.244 9.651 12.331 15.133

The last experiment is intended to analyze the sensitivity of the Trisection al-
gorithm to the accuracy of the Lipschitz constant estimates used. Denoting

118



6.5. Chapter Summary and Conclusions

by L “ pL1, L2q
T the actual Lipschitz constants for the problem, the following

estimates are used: L̃ “ L{1.2, L, 1.2L, 1.4L. For each problem the algorithm is
stopped, when condition (6.33) is satisfied with ε “ 0.1. The results are shown
in Table 6.4. Here n denotes the number of function evaluations performed, nd,
np and Error Rate have the same meaning as in Table 6.3. The maximum and
total tolerance of the intervals immediately after the condition (6.33) has been
satisfied is given on rows max ∆̄p¨q and

ř

∆̄p¨q, respectively.

It can be seen from Table 6.4 that the number of required function evaluations
grows with the multiplier of the actual Lipschitz constants, as does the total
tolerance of the intervals. This can be explained by the tolerance (6.29) being
proportional to constant C (6.19). As a result, when higher Lipschitz constants
are used, the intervals will have to become shorter for the maximum tolerance
to drop below the level ε. The numbers of non-dominated and actual Pareto
solutions increase with the multiplier as well. nd and np differ by 1 or 2 most of
the time and the difference does not seem highly influenced by L̃. The maximum
tolerance does not seem to be influenced, either. During the experiment no
warnings regarding the use of too small Lipschitz constants have been printed,
meaning that the variation of the objectives contradicting the Lipschitz condition
with the given estimates of L has not been observed. So it can be concluded that
the equal scaling of both Lipschitz constants does not affect the performance for
the worse, as the increased number of function evaluations is balanced by the
increased number of solutions in the actual Pareto front.

6.5 Chapter Summary and Conclusions

1. The problem of one-step worst-case optimal trisection of an arbitrary
subinterval of the feasible region is defined with respect to the extended
tolerance definition.

2. The trisection of a subinterval into three equal parts is proved to satisfy
the optimality conditions.

3. The presented analysis enables to exclude the dominated regions from
further search and thus efficiently distribute the trial points over the search
region. A corresponding optimization algorithm is implemented.
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4. The experimental investigation reveals a slight advantage of the bisection-
based algorithm over the trisection-based one.

5. The presented optimal univariate algorithm for bi-objective problems
supports the analogous trisection-based partitioning scheme used in bi-
variate bi-objective optimization.

6. The generalization of trisection to the higher-dimensional case could be
advantageous in the case of diagonal algorithms.
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Results and Conclusions

In this thesis guidelines for the choice of a statistical objective function model
among the Gaussian stochastic functions constructing global optimization al-
gorithms were formulated based on a proposed experimental methodology. It
was suggested to base the choice of the stochastic function on a priori informa-
tion about the objective function complexity that is either relatively high, low, or
unknown.

A recent global optimization algorithm relying on a hyper-rectangular decom-
position - adjusted statistical objective function model was implemented in
several ways and experimentally compared to other similar contemporary al-
gorithms. Two extensions of this algorithm, balancing the local and global search
strategies, were proposed. First, algorithm GB operates by switching between ex-
plicitly defined global and local search phases, based on improvement achieved
in the current phase. Second, algorithm Cluster employs a clustering procedure
to identify the well-explored regions.

The asymptotic equivalence of two criteria, used in global optimization al-
gorithms based on simplicial decomposition-adjusted statistical models of the
objective function, was proved.

The definition of the one-step worst-case optimal interval trisection problem in
the univariate bi-objective Lipschitz optimization was presented. The optimality
was defined using the concept of tolerance of the local Lipschitz lower bound for
the actual Pareto front over a subinterval of the feasible region. The trisection of
an interval into three equal parts was proved to satisfy the optimality conditions,
and a corresponding optimal algorithm was implemented.

The research reported in this thesis leads to the following conclusions:
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1. The experimental results show that the P-algorithm, constructed assuming
a stationary isotropic Gaussian stochastic function with an exponential
correlation, performs the best for a variety of univariate and bivariate
objective functions, and is therefore advised when no a priori informa-
tion about the objective function complexity is available. Simple objective
functions can successfully be optimized by the Maximum expected improve-
ment algorithm, constructed using one of the stationary isotropic Gaussian
stochastic functions with low short-range variability.

2. Two heuristic global search acceleration techniques were proposed, suc-
cessfully preventing a recent global optimization algorithm Rect-1 from
excessively exploring the vicinity of the suboptimal local minimizers. Pro-
posed extensions GB and Cluster consume considerably fewer function
evaluations than the original algorithm for difficult multi-modal global
optimization problems. For such problems Cluster worst-case performance
is the best among the considered algorithms.

3. Two simplex selection criteria in global optimization with simplicial
decomposition-adjusted statistical models are related by an asymptotic
equivalence relation, as the size of a simplex decreases. The first criterion is
defined by a simple expression, based on heuristic reasoning. The second
criterion relates to the improvement probability at the current optimization
step, but its expression is complex. The simple expression is naturally pre-
ferred over a complicated one, however, it lacked a theoretical justification.
The demonstrated equivalence relation provides the required theoretical
support for the simple expression in the bi-variate case. Moreover, a simpli-
fied expression approximating the second criterion in higher dimensions
was obtained, that might be used in new optimization algorithms.

4. The trisection of an interval into three equal parts in the univariate bi-
objective Lipschitz optimization is one-step worst-case optimal. The tol-
erance of the local Lipschitz lower bound for the actual Pareto front over
an interval is used to define the optimality in question. This optimal
univariate partitioning scheme supports an analogous trisection-based
partitioning scheme used in bi-variate bi-objective optimization. The ana-
lysis presented enables to exclude the dominated regions from further
search and thus efficiently distribute trial points over the search region.
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6.5. Chapter Summary and Conclusions

The generalization of trisection to the higher-dimensional case could be
advantageous in the case of diagonal algorithms.
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Appendix A

Expressions of Conditional
Characteristics of Stochastic
Functions

This appendix presents the expressions of conditional mean mpx|ξpxiq “ yi, i “

1, . . . , nq and conditional variance s2px|ξpxiq “ yi, i “ 1, . . . , nq for univariate
Markovian Gaussian stochastic processes. The conditional characteristics of the
random process are computed with respect to the already performed ordered
trials ξpxni q “ yni , i “ 1, . . . , n, where xni ă xni`1, i “ 1, . . . , n´ 1.

The Wiener process possesses the Markov property, therefore for x P rxnj , xnj`1s,
j “ 1, . . . , n´ 1,

mpx|ξpxni q “ yi, i “ 1, . . . , nq “ mpx|ξpxni q “ yi, i “ j, j ` 1q “

“
yjpx

n
j`1 ´ xq ` yj`1px´ x

n
j q

xnj`1 ´ x
n
j

, (A.1)

s2
px|ξpxni q “ yi, i “ 1, . . . , nq “ s2

px|ξpxni q “ yi, i “ j, j ` 1q “

“ σ2
pxnj`1 ´ xqpx´ x

n
j q

xnj`1 ´ x
n
j

, (A.2)

where σ is the Wiener process standard deviation parameter.

A special 1-dimensional case of a stationary Gaussian random process with
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mean µ, standard deviation σ and an Exponential correlation function ρpτq “

expp´τ{cq, τ ě 0, possesses the Markov property, therefore the conditional
characteristics at x P rxnj , xnj`1s, j “ 1, . . . , n´ 1, can be computed according to
explicit expressions:

mpx|ξpxni q “ yi, i “ 1, . . . , nq “ mpx|ξpxni q “ yi, i “ j, j ` 1q “

“ µ` pyj ´ µ, yj`1 ´ µqpvMqT , (A.3)

s2
px|ξpxni q “ yi, i “ 1, . . . , nq “ spx|ξpxni q “ yi, i “ j, j ` 1q “

“ σ2

ˆ

1´

ˆ

exp

ˆ

´
x´ xnj
c

˙

, exp

ˆ

´
xnj`1 ´ x

c

˙˙

pvMqT
˙

, (A.4)

v “
ˆ

exp

ˆ

´
x´ xnj
c

˙

, exp

ˆ

´
xnj`1 ´ x

c

˙˙T

, (A.5)

M “
1

1´ expp´
2pxnj`1´x

n
j q

c
q

˜

1 ´ expp´
xnj`1´xj

c
q

´ expp´
xnj`1´x

n
j

c
q 1

¸

. (A.6)
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Appendix B

Statistical Model Parameter
Estimation Statistics

Suppose that a global optimization algorithm is defined using an assumed model
of the objective function, that is characterized by the parameters Θ. Further,
suppose that the objective function is generated according to the actual model,
that is either the same as the assumed model, or a different one.

The maximum likelihood estimates θ̂i, i “ 1, . . . , 1000, of θ P Θ were obtained
from the trials of the 1000 realizations of the actual model, as described in Sec-
tion 3.5. Tables B.1 and B.2 provide the statistics of the obtained estimates. In
particular, for each combination of the assumed and actual models, two values
per parameter θ P Θ are given, denoted, respectively, by Erθs and

?
V rθs:

1. Erθs denotes the mean of the estimates:

1

1000

1000
ÿ

i“1

θ̂i; (B.1)

2.
?
V rθs denotes the standard deviation of the estimates:

1

1001

1000
ÿ

i“1

pθ̂i ´ Erθsq
2. (B.2)
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Table B.1: Parameter estimation statistics for 1-dimensional models. The values
at ki “ i{M , i “ 0, . . . ,M , M “ 10, were used to produce the estimates.

Actual model Assumed model

Wiener Exponential Gaussian

Erσs Wiener 0.93511 3.66874 3.84023
?
V rσs 0.20670 0.99573 0.97946

Erµs Exponential 0.00604 0.00906 ´0.00504
?
V rµs 0.43485 0.36885 0.34311

Erσs 0.43340 0.90704 0.92986
?
V rσs 0.20965 0.21994 0.21651

Ercs 0.39734 0.06359 0.05595
?
V rcs 0.41824 0.05290 0.04210

Erµs Gaussian ´0.31536 1.25238 ´1.28916
?
V rµs 18.84934 60.08774 35.85975

Erσs 1.88043 3.79245 2.02258
?
V rσs 16.95115 50.28182 30.44435

Ercs 0.14726 0.07753 0.06853
?
V rcs 0.22721 0.16468 0.11659
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Table B.2: Parameter estimation statistics for 2-dimensional models. The values
at kij “ pi{M, j{Mq, i, j “ 0, . . . ,M , M “ 4, were used to produce the estimates.

Assumed model Actual model

Gaussian Exponential Spheric Gneiting-2 Gneiting-4 Stable

Erµs Gaussian ´0.01561 0.00879 ´0.00370 ´0.00682 ´0.00591 ´0.00719
?
V rµs 0.26557 0.33574 0.26479 0.26428 0.23852 0.28018

Erσs 0.96491 0.92431 0.95997 0.95779 0.96331 0.95313
?
V rσs 0.15871 0.14485 0.15054 0.14886 0.14391 0.15164

Ercs 0.18616 0.19003 0.18115 0.18125 0.15987 0.18943
?
V rcs 0.04866 0.04937 0.04834 0.04761 0.04334 0.04833

Erµs Exponential ´0.01691 0.00819 ´0.00465 ´0.00743 ´0.00636 ´0.00822
?
V rµs 0.26766 0.33670 0.26901 0.26928 0.24161 0.28612

Erσs 0.97507 0.94208 0.97033 0.96878 0.98019 0.96379
?
V rσs 0.15738 0.15643 0.14786 0.14743 0.14383 0.15144

Ercs 0.15978 0.18332 0.15415 0.15488 0.13637 0.16663
?
V rcs 0.07237 0.10206 0.06882 0.06671 0.04488 0.07684

Erµs Spheric ´0.01678 0.00895 ´0.00319 ´0.00608 ´0.00559 ´0.00724
?
V rµs 0.26787 0.33771 0.26437 0.26504 0.23922 0.28244

Erσs 0.96407 0.93294 0.95724 0.95664 0.96254 0.95409
?
V rσs 0.15775 0.15715 0.14883 0.14861 0.14420 0.15439

Ercs 0.39779 0.42498 0.37977 0.38290 0.32717 0.40857
?
V rcs 0.13999 0.17716 0.13092 0.12968 0.11655 0.13661

Erµs Gneiting_2 ´0.01606 0.00869 ´0.00367 ´0.00658 ´0.00591 ´0.00672
?
V rµs 0.26562 0.33586 0.26431 0.26451 0.23848 0.28065

Erσs 0.96339 0.92530 0.95762 0.95618 0.96193 0.95213
?
V rσs 0.15719 0.14800 0.14805 0.14763 0.14320 0.15087

Ercs 0.47023 0.48307 0.45356 0.45561 0.38768 0.48008
?
V rcs 0.14892 0.15477 0.14815 0.14549 0.14036 0.14762

Erµs Gneiting_4 ´0.01582 0.00868 ´0.00370 ´0.00674 ´0.00590 ´0.00709
?
V rµs 0.26550 0.33603 0.26434 0.26425 0.23843 0.28020

Erσs 0.96337 0.92362 0.95837 0.95650 0.96224 0.95183
?
V rσs 0.15713 0.14497 0.14900 0.14786 0.14348 0.15054

Ercs 0.52897 0.54340 0.51166 0.51381 0.43139 0.54183
?
V rcs 0.17708 0.17580 0.17713 0.17493 0.17480 0.17252

Erµs Stable ´0.01612 0.00872 ´0.00368 ´0.00671 ´0.00593 ´0.00707
?
V rµs 0.26576 0.33509 0.26493 0.26480 0.23879 0.28082

Erσs 0.96484 0.92617 0.95936 0.95756 0.96350 0.95351
?
V rσs 0.15764 0.14663 0.14897 0.14806 0.14335 0.15124

Ercs 0.18257 0.18903 0.17708 0.17744 0.15607 0.18676
?
V rcs 0.05182 0.05451 0.05034 0.04950 0.04283 0.05157
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Appendix C

Proofs of Chapter 6

In this appendix the proofs of the lemmas and the theorem of Chapter 6 are
presented.

Proof of Lemma 6.3.2.

∆nd
ppxj, xj`1q, pfpxjq, fpxj`1qqq “

“ maxp||π1 ´ pyj, zjq
T
||, ||π2 ´ pyj`1, zj`1q

T
||q “

“ 2C maxpt1 ´ xj, xj`1 ´ t2q “ C max

ˆ

pxj`1 ´ xjq ´
δy

L1

, pxj`1 ´ xjq ´
δz

L2

˙

.

˝

Proof of Lemma 6.3.4. Since the point t̂ is such that it is possible that either
yt̂ “ yj , or zt̂ “ zj , using (6.22) the following is obtained

∆d
ppxj, xj`1q, pfpxjq, fpxj`1qqq “

“ C max
fp¨qPΨ

max

ˆ

pt̂´ xjq ´
|yj ´ yt̂|

L1

, pt̂´ xjq ´
|zj ´ zt̂|

L2

˙

“

“ Cpt̂´ xjq “ C

ˆ

pxj`1 ´ xjq ´min

ˆ

δy

L1

,
δz

L2

˙˙

, (C.1)

from which (6.25) follows directly. ˝
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C. Proofs of Chapter 6

Proof of Lemma 6.3.7. Expanding ∆ppr1, r2q, pfpr1q, fpr2qqq according to (6.26)

∆̄ppr1, r2, xj, xj`1q, pfpxjq, fpxj`1qqq “

“ C max
fp¨qPΨ

max

ˆ

pr2 ´ r1q ´
|yr1 ´ yr2 |

L1

, pr2 ´ r1q ´
|zr1 ´ zr2 |

L2

˙

. (C.2)

When the subinterval rr1, r2s is not longer than βppxj, xj`1q, pfpxjq, fpxj`1qqq,
a possibility exists that the objective values at the endpoints are equal, i. e.
yr1 “ yr2 or zr1 “ zr2 . Therefore ∆̄p¨q grows with the length of the subinterval,
but never exceeds βppxj, xj`1q, pfpxjq, fpxj`1qqq. ˝

Proof of Lemma 6.3.8. Using (6.28) for interval rt1, t2s, the following is obtained

βppt1, t2q, pfpt1q, fpt2qqq “ pt2 ´ t1q ´min

ˆ

|yt1 ´ yt2 |

L1

,
|zt1 ´ zt2 |

L2

˙

. (C.3)

Then since ru, vs Ă rt1, t2s, using (6.29)

max
fp¨qPΨ

∆̄ppu, v, t1, t2q, pfpt1q, fpt2qqq “

“ max
fp¨qPΨ

C ˆ

$

&

%

v ´ u, if v ´ u ď βppt1, t2q, pfpt1q, fpt2qqq,

βppt1, t2q, pfpt1q, fpt2qqq, otherwise,
“

“ C ˆ

$

&

%

v ´ u, if v ´ u ď maxfp¨qPΨ βppt1, t2q, pfpt1q, fpt2qqq,

maxfp¨qPΨ βppt1, t2q, pfpt1q, fpt2qqq, otherwise.

(C.4)

It is necessesary to show that (C.4) gives the same result as

∆̄ppu, v, xj, xj`1q, pfpxjq, fpxj`1qqq “

“ C ˆ

$

&

%

v ´ u, if v ´ u ď βppxj, xj`1q, pfpxjq, fpxj`1qqq,

βppxj, xj`1q, pfpxjq, fpxj`1qqq, otherwise.

(C.5)

Let us first discuss the case when t2 ´ t1 ď βppxj, xj`1q, pfpxjq, fpxj`1qqq. Since it
is then possible that either yt1 “ yt2 , or zt1 “ zt2 , maxfp¨qPΨ βppt1, t2q, pfpt1q, fpt2qqq “
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t2´ t1 ě v´u. On the other hand, βppxj, xj`1q, pfpxjq, fpxj`1qqq ě t2´ t1 ě v´u.
Thus, both (C.4) and (C.5) result in Cpv ´ uq.

Now let us analyze the case t2 ´ t1 ą βppxj, xj`1q, pfpxjq, fpxj`1qqq. Then

min
fp¨qPΨ

min

ˆ

|yt1 ´ yt2 |

L1

,
|zt1 ´ zt2 |

L2

˙

“

“ pt2 ´ t1q ´ βppxj, xj`1q, pfpxjq, fpxj`1qqq. (C.6)

Therefore

max
fp¨qPΨ

βppt1, t2q, pfpt1q, fpt2qqq “ βppxj, xj`1q, pfpxjq, fpxj`1qqq (C.7)

and expressions (C.4) and (C.5) coincide. ˝

Proof of Theorem 6.3.9. Let us first notice that (6.31) is equal to

∆̄˚
p¨q “ max t

max
fp¨qPΨ

∆̄ppr1, a, xj, bq, pfpxjq, fpbqqq,

max
fp¨qPΨ

∆̄ppa, b, xj, xj`1q, pfpxjq, fpxj`1qqq,

max
fp¨qPΨ

∆̄ppb, r2, a, xj`1q, pfpaq, fpxj`1qqq

u “ (C.8)

“ max t

∆̄ppr1, a, xj, xj`1q, pfpxjq, fpxj`1qqq,

∆̄ppa, b, xj, xj`1q, pfpxjq, fpxj`1qqq,

∆̄ppb, r2, xj, xj`1q, pfpxjq, fpxj`1qqq

u. (C.9)

The equality of (C.8) and (C.9) is based on the Lemma 6.3.8. Then, using (6.29),
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C. Proofs of Chapter 6

a

r1

ã

r2

b

r1

b̃
r2

0

β

r2−r1

Figure C.1: The surface, formed by 1
C

∆̄˚p¨q. The minimizer of this surface is
ã “ r1 `

1
3
pr2 ´ r1q, b̃ “ r1 `

2
3
pr2 ´ r1q.

1

C
∆̄ppr1, a, xj, xj`1q, pfpxjq, fpxj`1qqq “

$

&

%

a´ r1, if r1 ď a ď r1 ` β,

β, if r1 ` β ď a ď r2;

1

C
∆̄ppa, b, xj, xj`1q, pfpxjq, fpxj`1qqq “

$

&

%

b´ a, if a ď b ď a` β,

β, if a` β ď b ď r2;
(C.10)

1

C
∆̄ppb, r2, xj, xj`1q, pfpxjq, fpxj`1qqq “

$

&

%

β, if r1 ď b ď r2 ´ β,

r2 ´ b, if r2 ´ β ď b ď r2.

The maximum of these terms produces the 1
C

∆̄˚p¨q surface, as shown in Fig-
ure C.1. The minimum of this surface corresponds to the pã, b̃q and is determined
from the following system of equations, when 1

3
pr2 ´ r1q ď β:

ã´ r1 “ b̃´ ã “ r2 ´ b̃. (C.11)

This results in ã “ r1`
1
3
pr2´ r1q, b̃ “ r1`

2
3
pr2´ r1q and the minimum of 1

C
∆̄˚p¨q

at pã, b̃q is 1
3
pr2 ´ r1q. In case 1

3
pr2 ´ r1q ą β the flat parts of the surface merge

into a plane, and every choice of a and b leads to an equal 1
C

∆̄˚p¨q “ β. This
completes the proof of the theorem. ˝
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5. A. Žilinskas and G. Gimbutienė. On an asymptotic property of a simplicial
statistical model of global optimization. In A. Migdalas and A. Karakit-

143

http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4965342
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4965342


Publications by the Author

siou, editors, Optimization, Control, and Applications in the Information Age:
In Honor of Panos M. Pardalos’s 60th Birthday, volume 130 of Springer
Proceedings in Mathematics and Statistics, pages 383–391. Springer Inter-
national Publishing, Cham, 2015. ISBN 978-3-319-18567-5. doi: http:
//dx.doi.org/10.1007/978-3-319-18567-5_20.

Conference Presentations
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ALGORITHMS FOR NON-CONVEX GLOBAL OPTIMIZATION BASED ON
THE STATISTICAL AND LIPSCHITZ OBJECTIVE FUNCTION MODELS

Doctoral dissertation

Physical sciences (P000)

Informatics (09P)

Editor Nijolė Požėraitytė
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